This repository has been archived on 2025-04-22. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
com.unity.netcode.gameobjects/Runtime/NetworkVariable/NetworkVariable.cs
Unity Technologies 143a6cbd34 com.unity.netcode.gameobjects@2.0.0-exp.2
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [2.0.0-exp.2] - 2024-04-02

### Added
- Added updates to all internal messages to account for a distributed authority network session connection.  (#2863)
- Added `NetworkRigidbodyBase` that provides users with a more customizable network rigidbody, handles both `Rigidbody` and `Rigidbody2D`, and provides an option to make `NetworkTransform` use the rigid body for motion.  (#2863)
  - For a customized `NetworkRigidbodyBase` class:
    - `NetworkRigidbodyBase.AutoUpdateKinematicState` provides control on whether the kinematic setting will be automatically set or not when ownership changes.
    - `NetworkRigidbodyBase.AutoSetKinematicOnDespawn` provides control on whether isKinematic will automatically be set to true when the associated `NetworkObject` is despawned.
    - `NetworkRigidbodyBase.Initialize` is a protected method that, when invoked, will initialize the instance. This includes options to:
      - Set whether using a `RigidbodyTypes.Rigidbody` or `RigidbodyTypes.Rigidbody2D`.
      - Includes additional optional parameters to set the `NetworkTransform`, `Rigidbody`, and `Rigidbody2d` to use.
  - Provides additional public methods:
    - `NetworkRigidbodyBase.GetPosition` to return the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.GetRotation` to return the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.MovePosition` to move to the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.MoveRotation` to move to the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.SetPosition` to set the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.SetRotation` to set the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.ApplyCurrentTransform` to set the position and rotation of the `Rigidbody` or `Rigidbody2d` based on the associated `GameObject` transform (depending upon its initialized setting).
    - `NetworkRigidbodyBase.WakeIfSleeping` to wake up the rigid body if sleeping.
    - `NetworkRigidbodyBase.SleepRigidbody` to put the rigid body to sleep.
    - `NetworkRigidbodyBase.IsKinematic` to determine if the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) is currently kinematic.
    - `NetworkRigidbodyBase.SetIsKinematic` to set the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) current kinematic state.
    - `NetworkRigidbodyBase.ResetInterpolation` to reset the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) back to its original interpolation value when initialized.
  - Now includes a `MonoBehaviour.FixedUpdate` implementation that will update the assigned `NetworkTransform` when `NetworkRigidbodyBase.UseRigidBodyForMotion` is true. (#2863)
- Added `RigidbodyContactEventManager` that provides a more optimized way to process collision enter and collision stay events as opposed to the `Monobehaviour` approach. (#2863)
  - Can be used in client-server and distributed authority modes, but is particularly useful in distributed authority.
- Added rigid body motion updates to `NetworkTransform` which allows users to set interolation on rigid bodies. (#2863)
  - Extrapolation is only allowed on authoritative instances, but custom class derived from `NetworkRigidbodyBase` or `NetworkRigidbody` or `NetworkRigidbody2D` automatically switches non-authoritative instances to interpolation if set to extrapolation.
- Added distributed authority mode support to `NetworkAnimator`. (#2863)
- Added session mode selection to `NetworkManager` inspector view. (#2863)
- Added distributed authority permissions feature. (#2863)
- Added distributed authority mode specific `NetworkObject` permissions flags (Distributable, Transferable, and RequestRequired). (#2863)
- Added distributed authority mode specific `NetworkObject.SetOwnershipStatus` method that applies one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863)
- Added distributed authority mode specific `NetworkObject.RemoveOwnershipStatus` method that removes one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863)
- Added distributed authority mode specific `NetworkObject.HasOwnershipStatus` method that will return (true or false) whether one or more ownership flags is set. (#2863)
- Added distributed authority mode specific `NetworkObject.SetOwnershipLock` method that locks ownership of a `NetworkObject` to prevent ownership from changing until the current owner releases the lock. (#2863)
- Added distributed authority mode specific `NetworkObject.RequestOwnership` method that sends an ownership request to the current owner of a spawned `NetworkObject` instance. (#2863)
- Added distributed authority mode specific `NetworkObject.OnOwnershipRequested` callback handler that is invoked on the owner/authoritative side when a non-owner requests ownership. Depending upon the boolean returned value depends upon whether the request is approved or denied. (#2863)
- Added distributed authority mode specific `NetworkObject.OnOwnershipRequestResponse` callback handler that is invoked when a non-owner's request has been processed. This callback includes a `NetworkObjet.OwnershipRequestResponseStatus` response parameter that describes whether the request was approved or the reason why it was not approved. (#2863)
- Added distributed authority mode specific `NetworkObject.DeferDespawn` method that defers the despawning of `NetworkObject` instances on non-authoritative clients based on the tick offset parameter. (#2863)
- Added distributed authority mode specific `NetworkObject.OnDeferredDespawnComplete` callback handler that can be used to further control when deferring the despawning of a `NetworkObject` on non-authoritative instances. (#2863)
- Added `NetworkClient.SessionModeType` as one way to determine the current session mode of the network session a client is connected to. (#2863)
- Added distributed authority mode specific `NetworkClient.IsSessionOwner` property to determine if the current local client is the current session owner of a distributed authority session. (#2863)
- Added distributed authority mode specific client side spawning capabilities. When running in distributed authority mode, clients can instantiate and spawn `NetworkObject` instances (the local client is authomatically the owner of the spawned object). (#2863)
  - This is useful to better visually synchronize owner authoritative motion models and newly spawned `NetworkObject` instances (i.e. projectiles for example).
- Added distributed authority mode specific client side player spawning capabilities. Clients will automatically spawn their associated player object locally. (#2863)
- Added distributed authority mode specific `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property (default is true) to provide control over the automatic spawning of player prefabs on the local client side. (#2863)
- Added distributed authority mode specific `NetworkManager.OnFetchLocalPlayerPrefabToSpawn` callback that, when assigned, will allow the local client to provide the player prefab to be spawned for the local client. (#2863)
  - This is only invoked if the `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property is set to true.
- Added distributed authority mode specific `NetworkBehaviour.HasAuthority` property that determines if the local client has authority over the associated `NetworkObject` instance (typical use case is within a `NetworkBehaviour` script much like that of `IsServer` or `IsClient`). (#2863)
- Added distributed authority mode specific `NetworkBehaviour.IsSessionOwner` property that determines if the local client is the session owner (typical use case would be to determine if the local client can has scene management authority within a `NetworkBehaviour` script). (#2863)
- Added support for distributed authority mode scene management where the currently assigned session owner can start scene events (i.e. scene loading and scene unloading). (#2863)

### Fixed

- Fixed issue where the host was not invoking `OnClientDisconnectCallback` for its own local client when internally shutting down. (#2822)
- Fixed issue where NetworkTransform could potentially attempt to "unregister" a named message prior to it being registered. (#2807)
- Fixed issue where in-scene placed `NetworkObject`s with complex nested children `NetworkObject`s (more than one child in depth) would not synchronize properly if WorldPositionStays was set to true. (#2796)

### Changed
- Changed client side awareness of other clients is now the same as a server or host. (#2863)
- Changed `NetworkManager.ConnectedClients` can now be accessed by both server and clients. (#2863)
- Changed `NetworkManager.ConnectedClientsList` can now be accessed by both server and clients. (#2863)
- Changed `NetworkTransform` defaults to owner authoritative when connected to a distributed authority session. (#2863)
- Changed `NetworkVariable` defaults to owner write and everyone read permissions when connected to a distributed authority session (even if declared with server read or write permissions).  (#2863)
- Changed `NetworkObject` no longer implements the `MonoBehaviour.Update` method in order to determine whether a `NetworkObject` instance has been migrated to a different scene. Instead, only `NetworkObjects` with the `SceneMigrationSynchronization` property set will be updated internally during the `NetworkUpdateStage.PostLateUpdate` by `NetworkManager`. (#2863)
- Changed `NetworkManager` inspector view layout where properties are now organized by category. (#2863)
- Changed `NetworkTransform` to now use `NetworkTransformMessage` as opposed to named messages for NetworkTransformState updates. (#2810)
- Changed `CustomMessageManager` so it no longer attempts to register or "unregister" a null or empty string and will log an error if this condition occurs. (#2807)
2024-04-02 00:00:00 +00:00

231 lines
8.8 KiB
C#

using System;
using UnityEngine;
namespace Unity.Netcode
{
/// <summary>
/// A variable that can be synchronized over the network.
/// </summary>
/// <typeparam name="T">the unmanaged type for <see cref="NetworkVariable{T}"/> </typeparam>
[Serializable]
[GenerateSerializationForGenericParameter(0)]
public class NetworkVariable<T> : NetworkVariableBase
{
/// <summary>
/// Delegate type for value changed event
/// </summary>
/// <param name="previousValue">The value before the change</param>
/// <param name="newValue">The new value</param>
public delegate void OnValueChangedDelegate(T previousValue, T newValue);
/// <summary>
/// The callback to be invoked when the value gets changed
/// </summary>
public OnValueChangedDelegate OnValueChanged;
internal override NetworkVariableType Type => NetworkVariableType.Value;
/// <summary>
/// Constructor for <see cref="NetworkVariable{T}"/>
/// </summary>
/// <param name="value">initial value set that is of type T</param>
/// <param name="readPerm">the <see cref="NetworkVariableReadPermission"/> for this <see cref="NetworkVariable{T}"/></param>
/// <param name="writePerm">the <see cref="NetworkVariableWritePermission"/> for this <see cref="NetworkVariable{T}"/></param>
public NetworkVariable(T value = default,
NetworkVariableReadPermission readPerm = DefaultReadPerm,
NetworkVariableWritePermission writePerm = DefaultWritePerm)
: base(readPerm, writePerm)
{
m_InternalValue = value;
// Since we start with IsDirty = true, this doesn't need to be duplicated
// right away. It won't get read until after ResetDirty() is called, and
// the duplicate will be made there. Avoiding calling
// NetworkVariableSerialization<T>.Duplicate() is important because calling
// it in the constructor might not give users enough time to set the
// DuplicateValue callback if they're using UserNetworkVariableSerialization
m_PreviousValue = default;
}
/// <summary>
/// Resets the NetworkVariable when the associated NetworkObject is not spawned
/// </summary>
/// <param name="value">the value to reset the NetworkVariable to (if none specified it resets to the default)</param>
public void Reset(T value = default)
{
if (m_NetworkBehaviour == null || m_NetworkBehaviour != null && !m_NetworkBehaviour.NetworkObject.IsSpawned)
{
m_InternalValue = value;
m_PreviousValue = default;
}
}
/// <summary>
/// The internal value of the NetworkVariable
/// </summary>
[SerializeField]
private protected T m_InternalValue;
private protected T m_PreviousValue;
private bool m_HasPreviousValue;
private bool m_IsDisposed;
/// <summary>
/// The value of the NetworkVariable container
/// </summary>
public virtual T Value
{
get => m_InternalValue;
set
{
// Compare bitwise
if (NetworkVariableSerialization<T>.AreEqual(ref m_InternalValue, ref value))
{
return;
}
if (m_NetworkManager && !CanClientWrite(m_NetworkManager.LocalClientId))
{
throw new InvalidOperationException($"[Client-{m_NetworkManager.LocalClientId}][{m_NetworkBehaviour.name}][{Name}] Write permissions ({WritePerm}) for this client instance is not allowed!");
}
Set(value);
m_IsDisposed = false;
}
}
internal ref T RefValue()
{
return ref m_InternalValue;
}
public override void Dispose()
{
if (m_IsDisposed)
{
return;
}
m_IsDisposed = true;
if (m_InternalValue is IDisposable internalValueDisposable)
{
internalValueDisposable.Dispose();
}
m_InternalValue = default;
if (m_HasPreviousValue && m_PreviousValue is IDisposable previousValueDisposable)
{
m_HasPreviousValue = false;
previousValueDisposable.Dispose();
}
m_PreviousValue = default;
base.Dispose();
}
~NetworkVariable()
{
Dispose();
}
/// <summary>
/// Gets Whether or not the container is dirty
/// </summary>
/// <returns>Whether or not the container is dirty</returns>
public override bool IsDirty()
{
// For most cases we can use the dirty flag.
// This doesn't work for cases where we're wrapping more complex types
// like INetworkSerializable, NativeList, NativeArray, etc.
// Changes to the values in those types don't call the Value.set method,
// so we can't catch those changes and need to compare the current value
// against the previous one.
if (base.IsDirty())
{
return true;
}
// Cache the dirty value so we don't perform this again if we already know we're dirty
// Unfortunately we can't cache the NOT dirty state, because that might change
// in between to checks... but the DIRTY state won't change until ResetDirty()
// is called.
var dirty = !NetworkVariableSerialization<T>.AreEqual(ref m_PreviousValue, ref m_InternalValue);
SetDirty(dirty);
return dirty;
}
/// <summary>
/// Resets the dirty state and marks the variable as synced / clean
/// </summary>
public override void ResetDirty()
{
// Resetting the dirty value declares that the current value is not dirty
// Therefore, we set the m_PreviousValue field to a duplicate of the current
// field, so that our next dirty check is made against the current "not dirty"
// value.
if (IsDirty())
{
m_HasPreviousValue = true;
NetworkVariableSerialization<T>.Duplicate(m_InternalValue, ref m_PreviousValue);
}
base.ResetDirty();
}
/// <summary>
/// Sets the <see cref="Value"/>, marks the <see cref="NetworkVariable{T}"/> dirty, and invokes the <see cref="OnValueChanged"/> callback
/// if there are subscribers to that event.
/// </summary>
/// <param name="value">the new value of type `T` to be set/></param>
private protected void Set(T value)
{
SetDirty(true);
T previousValue = m_InternalValue;
m_InternalValue = value;
OnValueChanged?.Invoke(previousValue, m_InternalValue);
}
/// <summary>
/// Writes the variable to the writer
/// </summary>
/// <param name="writer">The stream to write the value to</param>
public override void WriteDelta(FastBufferWriter writer)
{
NetworkVariableSerialization<T>.WriteDelta(writer, ref m_InternalValue, ref m_PreviousValue);
}
/// <summary>
/// Reads value from the reader and applies it
/// </summary>
/// <param name="reader">The stream to read the value from</param>
/// <param name="keepDirtyDelta">Whether or not the container should keep the dirty delta, or mark the delta as consumed</param>
public override void ReadDelta(FastBufferReader reader, bool keepDirtyDelta)
{
// todo:
// keepDirtyDelta marks a variable received as dirty and causes the server to send the value to clients
// In a prefect world, whether a variable was A) modified locally or B) received and needs retransmit
// would be stored in different fields
T previousValue = m_InternalValue;
NetworkVariableSerialization<T>.ReadDelta(reader, ref m_InternalValue);
if (keepDirtyDelta)
{
SetDirty(true);
}
OnValueChanged?.Invoke(previousValue, m_InternalValue);
}
/// <inheritdoc />
public override void ReadField(FastBufferReader reader)
{
NetworkVariableSerialization<T>.Read(reader, ref m_InternalValue);
}
/// <inheritdoc />
public override void WriteField(FastBufferWriter writer)
{
NetworkVariableSerialization<T>.Write(writer, ref m_InternalValue);
}
}
}