This repository has been archived on 2025-04-22. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
com.unity.netcode.gameobjects/Runtime/Serialization/IReaderWriter.cs
Unity Technologies 4d70c198bd com.unity.netcode.gameobjects@1.5.1
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [1.5.1] - 2023-06-07

### Added

- Added support for serializing `NativeArray<>` and `NativeList<>` in `FastBufferReader`/`FastBufferWriter`, `BufferSerializer`, `NetworkVariable`, and RPCs. (To use `NativeList<>`, add `UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT` to your Scripting Define Symbols in `Project Settings > Player`) (#2375)
- The location of the automatically-created default network prefab list can now be configured (#2544)
- Added: Message size limits (max single message and max fragmented message) can now be set using NetworkManager.MaximumTransmissionUnitSize and NetworkManager.MaximumFragmentedMessageSize for transports that don't work with the default values (#2530)
- Added `NetworkObject.SpawnWithObservers` property (default is true) that when set to false will spawn a `NetworkObject` with no observers and will not be spawned on any client until `NetworkObject.NetworkShow` is invoked. (#2568)

### Fixed

- Fixed: Fixed a null reference in codegen in some projects (#2581)
- Fixed issue where the `OnClientDisconnected` client identifier was incorrect after a pending client connection was denied. (#2569)
- Fixed warning "Runtime Network Prefabs was not empty at initialization time." being erroneously logged when no runtime network prefabs had been added (#2565)
- Fixed issue where some temporary debug console logging was left in a merged PR. (#2562)
- Fixed the "Generate Default Network Prefabs List" setting not loading correctly and always reverting to being checked. (#2545)
- Fixed issue where users could not use NetworkSceneManager.VerifySceneBeforeLoading to exclude runtime generated scenes from client synchronization. (#2550)
- Fixed missing value on `NetworkListEvent` for `EventType.RemoveAt` events.  (#2542,#2543)
- Fixed issue where parenting a NetworkTransform under a transform with a scale other than Vector3.one would result in incorrect values on non-authoritative instances. (#2538)
- Fixed issue where a server would include scene migrated and then despawned NetworkObjects to a client that was being synchronized. (#2532)
- Fixed the inspector throwing exceptions when attempting to render `NetworkVariable`s of enum types. (#2529)
- Making a `NetworkVariable` with an `INetworkSerializable` type that doesn't meet the `new()` constraint will now create a compile-time error instead of an editor crash (#2528)
- Fixed Multiplayer Tools package installation docs page link on the NetworkManager popup. (#2526)
- Fixed an exception and error logging when two different objects are shown and hidden on the same frame (#2524)
- Fixed a memory leak in `UnityTransport` that occurred if `StartClient` failed. (#2518)
- Fixed issue where a client could throw an exception if abruptly disconnected from a network session with one or more spawned `NetworkObject`(s). (#2510)
- Fixed issue where invalid endpoint addresses were not being detected and returning false from NGO UnityTransport. (#2496)
- Fixed some errors that could occur if a connection is lost and the loss is detected when attempting to write to the socket. (#2495)

## Changed

- Adding network prefabs before NetworkManager initialization is now supported. (#2565)
- Connecting clients being synchronized now switch to the server's active scene before spawning and synchronizing NetworkObjects. (#2532)
- Updated `UnityTransport` dependency on `com.unity.transport` to 1.3.4. (#2533)
- Improved performance of NetworkBehaviour initialization by replacing reflection when initializing NetworkVariables with compile-time code generation, which should help reduce hitching during additive scene loads. (#2522)
2023-06-07 00:00:00 +00:00

605 lines
33 KiB
C#

using System;
using Unity.Collections;
using UnityEngine;
namespace Unity.Netcode
{
/// <summary>
/// Interface for an implementation of one side of a two-way serializer
/// </summary>
public interface IReaderWriter
{
/// <summary>
/// Check whether this implementation is a "reader" - if it's been constructed to deserialize data
/// </summary>
bool IsReader { get; }
/// <summary>
/// Check whether this implementation is a "writer" - if it's been constructed to serialize data
/// </summary>
bool IsWriter { get; }
/// <summary>
/// Get the underlying FastBufferReader struct.
/// Only valid when IsReader == true
/// </summary>
/// <returns>underlying FastBufferReader</returns>
FastBufferReader GetFastBufferReader();
/// <summary>
/// Get the underlying FastBufferWriter struct.
/// Only valid when IsWriter == true
/// </summary>
/// <returns>underlying FastBufferWriter</returns>
FastBufferWriter GetFastBufferWriter();
/// <summary>
/// Read or write a string
/// </summary>
/// <param name="s">The value to read/write</param>
/// <param name="oneByteChars">If true, characters will be limited to one-byte ASCII characters</param>
void SerializeValue(ref string s, bool oneByteChars = false);
/// <summary>
/// Read or write a single byte
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref byte value);
/// <summary>
/// Read or write a primitive value (int, bool, etc)
/// Accepts any value that implements the given interfaces, but is not guaranteed to work correctly
/// on values that are not primitives.
/// </summary>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref T value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T>;
/// <summary>
/// Read or write an array of primitive values (int, bool, etc)
/// Accepts any value that implements the given interfaces, but is not guaranteed to work correctly
/// on values that are not primitives.
/// </summary>
/// <param name="value">The values to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref T[] value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T>;
/// <summary>
/// Read or write an enum value
/// </summary>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref T value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum;
/// <summary>
/// Read or write an array of enum values
/// </summary>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref T[] value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum;
/// <summary>
/// Read or write a struct value implementing ISerializeByMemcpy
/// </summary>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref T value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy;
/// <summary>
/// Read or write an array of struct values implementing ISerializeByMemcpy
/// </summary>
/// <param name="value">The values to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref T[] value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy;
/// <summary>
/// Read or write a NativeArray of struct values implementing ISerializeByMemcpy
/// </summary>
/// <param name="value">The values to read/write</param>
/// <param name="allocator">The allocator to use to construct the resulting NativeArray when reading</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref NativeArray<T> value, Allocator allocator, FastBufferWriter.ForGeneric unused = default) where T : unmanaged;
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
/// <summary>
/// Read or write a NativeList of struct values implementing ISerializeByMemcpy
/// </summary>
/// <param name="value">The values to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref NativeList<T> value, FastBufferWriter.ForGeneric unused = default) where T : unmanaged;
#endif
/// <summary>
/// Read or write a struct or class value implementing INetworkSerializable
/// </summary>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref T value, FastBufferWriter.ForNetworkSerializable unused = default) where T : INetworkSerializable, new();
/// <summary>
/// Read or write an array of struct or class values implementing INetworkSerializable
/// </summary>
/// <param name="value">The values to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref T[] value, FastBufferWriter.ForNetworkSerializable unused = default) where T : INetworkSerializable, new();
/// <summary>
/// Read or write a FixedString value
/// </summary>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref T value, FastBufferWriter.ForFixedStrings unused = default)
where T : unmanaged, INativeList<byte>, IUTF8Bytes;
/// <summary>
/// Read or write NativeArray of FixedString values
/// </summary>
/// <param name="value">The value to read/write</param>
/// <param name="allocator">The allocator to use to construct the resulting NativeArray when reading</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref NativeArray<T> value, Allocator allocator)
where T : unmanaged, INativeList<byte>, IUTF8Bytes;
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
/// <summary>
/// Read or write a NativeList of FixedString values
/// </summary>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
void SerializeValue<T>(ref NativeList<T> value)
where T : unmanaged, INativeList<byte>, IUTF8Bytes;
#endif
/// <summary>
/// Read or write a Vector2 value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Vector2 value);
/// <summary>
/// Read or write an array of Vector2 values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Vector2[] value);
/// <summary>
/// Read or write a Vector3 value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Vector3 value);
/// <summary>
/// Read or write an array of Vector3 values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Vector3[] value);
/// <summary>
/// Read or write a Vector2Int value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Vector2Int value);
/// <summary>
/// Read or write an array of Vector2Int values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Vector2Int[] value);
/// <summary>
/// Read or write a Vector3Int value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Vector3Int value);
/// <summary>
/// Read or write an array of Vector3Int values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Vector3Int[] value);
/// <summary>
/// Read or write a Vector4 value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Vector4 value);
/// <summary>
/// Read or write an array of Vector4 values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Vector4[] value);
/// <summary>
/// Read or write a Quaternion value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Quaternion value);
/// <summary>
/// Read or write an array of Quaternion values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Quaternion[] value);
/// <summary>
/// Read or write a Color value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Color value);
/// <summary>
/// Read or write an array of Color values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Color[] value);
/// <summary>
/// Read or write a Color32 value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Color32 value);
/// <summary>
/// Read or write an array of Color32 values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Color32[] value);
/// <summary>
/// Read or write a Ray value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Ray value);
/// <summary>
/// Read or write an array of Ray values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Ray[] value);
/// <summary>
/// Read or write a Ray2D value
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValue(ref Ray2D value);
/// <summary>
/// Read or write an array of Ray2D values
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValue(ref Ray2D[] value);
/// <summary>
/// Read or write a NetworkSerializable value.
/// SerializeValue() is the preferred method to do this - this is provided for backward compatibility only.
/// </summary>
/// <param name="value">The value to read/write</param>
/// <typeparam name="T">The network serializable type</typeparam>
void SerializeNetworkSerializable<T>(ref T value) where T : INetworkSerializable, new();
/// <summary>
/// Performs an advance check to ensure space is available to read/write one or more values.
/// This provides a performance benefit for serializing multiple values using the
/// SerializeValuePreChecked methods. But note that the benefit is small and only likely to be
/// noticeable if serializing a very large number of items.
/// </summary>
/// <param name="amount"></param>
/// <returns></returns>
bool PreCheck(int amount);
/// <summary>
/// Serialize a string, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="s">The value to read/write</param>
/// <param name="oneByteChars">If true, characters will be limited to one-byte ASCII characters</param>
void SerializeValuePreChecked(ref string s, bool oneByteChars = false);
/// <summary>
/// Serialize a byte, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref byte value);
/// <summary>
/// Serialize a primitive, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter that can be used for enabling overload resolution based on generic constraints</param>
void SerializeValuePreChecked<T>(ref T value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T>;
/// <summary>
/// Serialize an array of primitives, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read/write</param>
/// <param name="unused">An unused parameter that can be used for enabling overload resolution based on generic constraints</param>
void SerializeValuePreChecked<T>(ref T[] value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T>;
/// <summary>
/// Serialize an enum, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter that can be used for enabling overload resolution based on generic constraints</param>
void SerializeValuePreChecked<T>(ref T value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum;
/// <summary>
/// Serialize an array of enums, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read/write</param>
/// <param name="unused">An unused parameter that can be used for enabling overload resolution based on generic constraints</param>
void SerializeValuePreChecked<T>(ref T[] value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum;
/// <summary>
/// Serialize a struct, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter that can be used for enabling overload resolution based on generic constraints</param>
void SerializeValuePreChecked<T>(ref T value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy;
/// <summary>
/// Serialize an array of structs, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read/write</param>
/// <param name="unused">An unused parameter that can be used for enabling overload resolution based on generic constraints</param>
void SerializeValuePreChecked<T>(ref T[] value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy;
/// <summary>
/// Serialize a NativeArray of structs, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read/write</param>
/// <param name="allocator">The allocator to use to construct the resulting NativeArray when reading</param>
/// <param name="unused">An unused parameter that can be used for enabling overload resolution based on generic constraints</param>
void SerializeValuePreChecked<T>(ref NativeArray<T> value, Allocator allocator, FastBufferWriter.ForGeneric unused = default) where T : unmanaged;
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
/// <summary>
/// Serialize a NativeList of structs, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read/write</param>
/// <param name="unused">An unused parameter that can be used for enabling overload resolution based on generic constraints</param>
void SerializeValuePreChecked<T>(ref NativeList<T> value, FastBufferWriter.ForGeneric unused = default) where T : unmanaged;
#endif
/// <summary>
/// Serialize a FixedString, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read/write</param>
/// <param name="unused">An unused parameter that can be used for enabling overload resolution based on generic constraints</param>
void SerializeValuePreChecked<T>(ref T value, FastBufferWriter.ForFixedStrings unused = default)
where T : unmanaged, INativeList<byte>, IUTF8Bytes;
/// <summary>
/// Serialize a Vector2, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Vector2 value);
/// <summary>
/// Serialize a Vector2 array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValuePreChecked(ref Vector2[] value);
/// <summary>
/// Serialize a Vector3, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Vector3 value);
/// <summary>
/// Serialize a Vector3 array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValuePreChecked(ref Vector3[] value);
/// <summary>
/// Serialize a Vector2Int, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Vector2Int value);
/// <summary>
/// Serialize a Vector2Int array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The values to read/write</param>
void SerializeValuePreChecked(ref Vector2Int[] value);
/// <summary>
/// Serialize a Vector3Int, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Vector3Int value);
/// <summary>
/// Serialize a Vector3Int array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Vector3Int[] value);
/// <summary>
/// Serialize a Vector4, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Vector4 value);
/// <summary>
/// Serialize a Vector4 array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Vector4[] value);
/// <summary>
/// Serialize a Quaternion, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Quaternion value);
/// <summary>
/// Serialize a Quaternion array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Quaternion[] value);
/// <summary>
/// Serialize a Color, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Color value);
/// <summary>
/// Serialize a Color array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Color[] value);
/// <summary>
/// Serialize a Color32, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Color32 value);
/// <summary>
/// Serialize a Color32 array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Color32[] value);
/// <summary>
/// Serialize a Ray, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Ray value);
/// <summary>
/// Serialize a Ray array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Ray[] value);
/// <summary>
/// Serialize a Ray2D, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Ray2D value);
/// <summary>
/// Serialize a Ray2D array, "pre-checked", which skips buffer checks.
/// In debug and editor builds, a check is made to ensure you've called "PreCheck" before
/// calling this. In release builds, calling this without calling "PreCheck" may read or write
/// past the end of the buffer, which will cause memory corruption and undefined behavior.
/// </summary>
/// <param name="value">The value to read/write</param>
void SerializeValuePreChecked(ref Ray2D[] value);
}
}