The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com). ## [1.0.0-pre.7] - 2022-04-01 ### Added - Added editor only check prior to entering into play mode if the currently open and active scene is in the build list and if not displays a dialog box asking the user if they would like to automatically add it prior to entering into play mode. (#1828) - Added `UnityTransport` implementation and `com.unity.transport` package dependency (#1823) - Added `NetworkVariableWritePermission` to `NetworkVariableBase` and implemented `Owner` client writable netvars. (#1762) - `UnityTransport` settings can now be set programmatically. (#1845) - `FastBufferWriter` and Reader IsInitialized property. (#1859) ### Changed - Updated `UnityTransport` dependency on `com.unity.transport` to 1.0.0 (#1849) ### Removed - Removed `SnapshotSystem` (#1852) - Removed `com.unity.modules.animation`, `com.unity.modules.physics` and `com.unity.modules.physics2d` dependencies from the package (#1812) - Removed `com.unity.collections` dependency from the package (#1849) ### Fixed - Fixed in-scene placed NetworkObjects not being found/ignored after a client disconnects and then reconnects. (#1850) - Fixed issue where `UnityTransport` send queues were not flushed when calling `DisconnectLocalClient` or `DisconnectRemoteClient`. (#1847) - Fixed NetworkBehaviour dependency verification check for an existing NetworkObject not searching from root parent transform relative GameObject. (#1841) - Fixed issue where entries were not being removed from the NetworkSpawnManager.OwnershipToObjectsTable. (#1838) - Fixed ClientRpcs would always send to all connected clients by default as opposed to only sending to the NetworkObject's Observers list by default. (#1836) - Fixed clarity for NetworkSceneManager client side notification when it receives a scene hash value that does not exist in its local hash table. (#1828) - Fixed client throws a key not found exception when it times out using UNet or UTP. (#1821) - Fixed network variable updates are no longer limited to 32,768 bytes when NetworkConfig.EnsureNetworkVariableLengthSafety is enabled. The limits are now determined by what the transport can send in a message. (#1811) - Fixed in-scene NetworkObjects get destroyed if a client fails to connect and shuts down the NetworkManager. (#1809) - Fixed user never being notified in the editor that a NetworkBehaviour requires a NetworkObject to function properly. (#1808) - Fixed PlayerObjects and dynamically spawned NetworkObjects not being added to the NetworkClient's OwnedObjects (#1801) - Fixed issue where NetworkManager would continue starting even if the NetworkTransport selected failed. (#1780) - Fixed issue when spawning new player if an already existing player exists it does not remove IsPlayer from the previous player (#1779) - Fixed lack of notification that NetworkManager and NetworkObject cannot be added to the same GameObject with in-editor notifications (#1777) - Fixed parenting warning printing for false positives (#1855)
778 lines
32 KiB
C#
778 lines
32 KiB
C#
using System.Collections.Generic;
|
|
using System;
|
|
using System.Linq;
|
|
using Unity.Collections;
|
|
using UnityEngine.SceneManagement;
|
|
|
|
namespace Unity.Netcode
|
|
{
|
|
/// <summary>
|
|
/// The different types of scene events communicated between a server and client. <br/>
|
|
/// Used by <see cref="NetworkSceneManager"/> for <see cref="SceneEventMessage"/> messages.<br/>
|
|
/// <em>Note: This is only when <see cref="NetworkConfig.EnableSceneManagement"/> is enabled.</em><br/>
|
|
/// See also: <br/>
|
|
/// <seealso cref="SceneEvent"/>
|
|
/// </summary>
|
|
public enum SceneEventType : byte
|
|
{
|
|
/// <summary>
|
|
/// Load a scene<br/>
|
|
/// <b>Invocation:</b> Server Side<br/>
|
|
/// <b>Message Flow:</b> Server to client<br/>
|
|
/// <b>Event Notification:</b> Both server and client are notified a load scene event started
|
|
/// </summary>
|
|
Load,
|
|
/// <summary>
|
|
/// Unload a scene<br/>
|
|
/// <b>Invocation:</b> Server Side<br/>
|
|
/// <b>Message Flow:</b> Server to client<br/>
|
|
/// <b>Event Notification:</b> Both server and client are notified an unload scene event started.
|
|
/// </summary>
|
|
Unload,
|
|
/// <summary>
|
|
/// Synchronizes current game session state for newly approved clients<br/>
|
|
/// <b>Invocation:</b> Server Side<br/>
|
|
/// <b>Message Flow:</b> Server to client<br/>
|
|
/// <b>Event Notification:</b> Server and Client receives a local notification (<em>server receives the ClientId being synchronized</em>).
|
|
/// </summary>
|
|
Synchronize,
|
|
/// <summary>
|
|
/// Game session re-synchronization of NetworkObjects that were destroyed during a <see cref="Synchronize"/> event<br/>
|
|
/// <b>Invocation:</b> Server Side<br/>
|
|
/// <b>Message Flow:</b> Server to client<br/>
|
|
/// <b>Event Notification:</b> Both server and client receive a local notification<br/>
|
|
/// </summary>
|
|
ReSynchronize,
|
|
/// <summary>
|
|
/// All clients have finished loading a scene<br/>
|
|
/// <b>Invocation:</b> Server Side<br/>
|
|
/// <b>Message Flow:</b> Server to Client<br/>
|
|
/// <b>Event Notification:</b> Both server and client receive a local notification containing the clients that finished
|
|
/// as well as the clients that timed out(<em>if any</em>).
|
|
/// </summary>
|
|
LoadEventCompleted,
|
|
/// <summary>
|
|
/// All clients have unloaded a scene<br/>
|
|
/// <b>Invocation:</b> Server Side<br/>
|
|
/// <b>Message Flow:</b> Server to Client<br/>
|
|
/// <b>Event Notification:</b> Both server and client receive a local notification containing the clients that finished
|
|
/// as well as the clients that timed out(<em>if any</em>).
|
|
/// </summary>
|
|
UnloadEventCompleted,
|
|
/// <summary>
|
|
/// A client has finished loading a scene<br/>
|
|
/// <b>Invocation:</b> Client Side<br/>
|
|
/// <b>Message Flow:</b> Client to Server<br/>
|
|
/// <b>Event Notification:</b> Both server and client receive a local notification.
|
|
/// </summary>
|
|
LoadComplete,
|
|
/// <summary>
|
|
/// A client has finished unloading a scene<br/>
|
|
/// <b>Invocation:</b> Client Side<br/>
|
|
/// <b>Message Flow:</b> Client to Server<br/>
|
|
/// <b>Event Notification:</b> Both server and client receive a local notification.
|
|
/// </summary>
|
|
UnloadComplete,
|
|
/// <summary>
|
|
/// A client has finished synchronizing from a <see cref="Synchronize"/> event<br/>
|
|
/// <b>Invocation:</b> Client Side<br/>
|
|
/// <b>Message Flow:</b> Client to Server<br/>
|
|
/// <b>Event Notification:</b> Both server and client receive a local notification.
|
|
/// </summary>
|
|
SynchronizeComplete,
|
|
}
|
|
|
|
/// <summary>
|
|
/// Used by <see cref="NetworkSceneManager"/> for <see cref="SceneEventMessage"/> messages
|
|
/// <em>Note: This is only when <see cref="NetworkConfig.EnableSceneManagement"/> is enabled.</em><br/>
|
|
/// See also: <seealso cref="SceneEvent"/>
|
|
/// </summary>
|
|
internal class SceneEventData : IDisposable
|
|
{
|
|
internal SceneEventType SceneEventType;
|
|
internal LoadSceneMode LoadSceneMode;
|
|
internal Guid SceneEventProgressId;
|
|
internal uint SceneEventId;
|
|
|
|
|
|
internal uint SceneHash;
|
|
internal int SceneHandle;
|
|
|
|
// Used by the client during synchronization
|
|
internal uint ClientSceneHash;
|
|
internal int ClientSceneHandle;
|
|
|
|
/// Only used for <see cref="SceneEventType.Synchronize"/> scene events, this assures permissions when writing
|
|
/// NetworkVariable information. If that process changes, then we need to update this
|
|
internal ulong TargetClientId;
|
|
|
|
private Dictionary<uint, List<NetworkObject>> m_SceneNetworkObjects;
|
|
private Dictionary<uint, long> m_SceneNetworkObjectDataOffsets;
|
|
|
|
/// <summary>
|
|
/// Client or Server Side:
|
|
/// Client side: Generates a list of all NetworkObjects by their NetworkObjectId that was spawned during th synchronization process
|
|
/// Server side: Compares list from client to make sure client didn't drop a message about a NetworkObject being despawned while it
|
|
/// was synchronizing (if so server will send another message back to the client informing the client of NetworkObjects to remove)
|
|
/// spawned during an initial synchronization.
|
|
/// </summary>
|
|
private List<NetworkObject> m_NetworkObjectsSync = new List<NetworkObject>();
|
|
|
|
/// <summary>
|
|
/// Server Side Re-Synchronization:
|
|
/// If there happens to be NetworkObjects in the final Event_Sync_Complete message that are no longer spawned,
|
|
/// the server will compile a list and send back an Event_ReSync message to the client.
|
|
/// </summary>
|
|
private List<ulong> m_NetworkObjectsToBeRemoved = new List<ulong>();
|
|
|
|
private bool m_HasInternalBuffer;
|
|
internal FastBufferReader InternalBuffer;
|
|
|
|
private NetworkManager m_NetworkManager;
|
|
|
|
internal List<ulong> ClientsCompleted;
|
|
internal List<ulong> ClientsTimedOut;
|
|
|
|
internal Queue<uint> ScenesToSynchronize;
|
|
internal Queue<uint> SceneHandlesToSynchronize;
|
|
|
|
|
|
/// <summary>
|
|
/// Server Side:
|
|
/// Add a scene and its handle to the list of scenes the client should load before synchronizing
|
|
/// Since scene handles are not the same per instance, the client builds a server scene handle to
|
|
/// client scene handle lookup table.
|
|
/// Why include the scene handle? In order to support loading of the same additive scene more than once
|
|
/// we must distinguish which scene we are talking about when the server tells the client to unload a scene.
|
|
/// The server will always communicate its local relative scene's handle and the client will determine its
|
|
/// local relative handle from the table being built.
|
|
/// Look for <see cref="NetworkSceneManager.m_ServerSceneHandleToClientSceneHandle"/> usage to see where
|
|
/// entries are being added to or removed from the table
|
|
/// </summary>
|
|
/// <param name="sceneIndex"></param>
|
|
/// <param name="sceneHandle"></param>
|
|
internal void AddSceneToSynchronize(uint sceneHash, int sceneHandle)
|
|
{
|
|
ScenesToSynchronize.Enqueue(sceneHash);
|
|
SceneHandlesToSynchronize.Enqueue((uint)sceneHandle);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client Side:
|
|
/// Gets the next scene hash to be loaded for approval and/or late joining
|
|
/// </summary>
|
|
/// <returns></returns>
|
|
internal uint GetNextSceneSynchronizationHash()
|
|
{
|
|
return ScenesToSynchronize.Dequeue();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client Side:
|
|
/// Gets the next scene handle to be loaded for approval and/or late joining
|
|
/// </summary>
|
|
/// <returns></returns>
|
|
internal int GetNextSceneSynchronizationHandle()
|
|
{
|
|
return (int)SceneHandlesToSynchronize.Dequeue();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client Side:
|
|
/// Determines if all scenes have been processed during the synchronization process
|
|
/// </summary>
|
|
/// <returns>true/false</returns>
|
|
internal bool IsDoneWithSynchronization()
|
|
{
|
|
if (ScenesToSynchronize.Count == 0 && SceneHandlesToSynchronize.Count == 0)
|
|
{
|
|
return true;
|
|
}
|
|
else if (ScenesToSynchronize.Count != SceneHandlesToSynchronize.Count)
|
|
{
|
|
// This should never happen, but in the event it does...
|
|
throw new Exception($"[{nameof(SceneEventData)}-Internal Mismatch Error] {nameof(ScenesToSynchronize)} count != {nameof(SceneHandlesToSynchronize)} count!");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Server Side:
|
|
/// Called just before the synchronization process
|
|
/// </summary>
|
|
internal void InitializeForSynch()
|
|
{
|
|
if (m_SceneNetworkObjects == null)
|
|
{
|
|
m_SceneNetworkObjects = new Dictionary<uint, List<NetworkObject>>();
|
|
}
|
|
else
|
|
{
|
|
m_SceneNetworkObjects.Clear();
|
|
}
|
|
|
|
if (ScenesToSynchronize == null)
|
|
{
|
|
ScenesToSynchronize = new Queue<uint>();
|
|
}
|
|
else
|
|
{
|
|
ScenesToSynchronize.Clear();
|
|
}
|
|
|
|
if (SceneHandlesToSynchronize == null)
|
|
{
|
|
SceneHandlesToSynchronize = new Queue<uint>();
|
|
}
|
|
else
|
|
{
|
|
SceneHandlesToSynchronize.Clear();
|
|
}
|
|
}
|
|
|
|
internal void AddSpawnedNetworkObjects()
|
|
{
|
|
m_NetworkObjectsSync.Clear();
|
|
foreach (var sobj in m_NetworkManager.SpawnManager.SpawnedObjectsList)
|
|
{
|
|
if (sobj.Observers.Contains(TargetClientId))
|
|
{
|
|
m_NetworkObjectsSync.Add(sobj);
|
|
}
|
|
}
|
|
m_NetworkObjectsSync.Sort(SortNetworkObjects);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Server Side:
|
|
/// Used during the synchronization process to associate NetworkObjects with scenes
|
|
/// </summary>
|
|
/// <param name="sceneIndex"></param>
|
|
/// <param name="networkObject"></param>
|
|
internal void AddNetworkObjectForSynch(uint sceneIndex, NetworkObject networkObject)
|
|
{
|
|
if (!m_SceneNetworkObjects.ContainsKey(sceneIndex))
|
|
{
|
|
m_SceneNetworkObjects.Add(sceneIndex, new List<NetworkObject>());
|
|
}
|
|
|
|
m_SceneNetworkObjects[sceneIndex].Add(networkObject);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client and Server:
|
|
/// Determines if the scene event type was intended for the client ( or server )
|
|
/// </summary>
|
|
/// <returns>true (client should handle this message) false (server should handle this message)</returns>
|
|
internal bool IsSceneEventClientSide()
|
|
{
|
|
switch (SceneEventType)
|
|
{
|
|
case SceneEventType.Load:
|
|
case SceneEventType.Unload:
|
|
case SceneEventType.Synchronize:
|
|
case SceneEventType.ReSynchronize:
|
|
case SceneEventType.LoadEventCompleted:
|
|
case SceneEventType.UnloadEventCompleted:
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Server Side:
|
|
/// Sorts the NetworkObjects to assure proper instantiation order of operations for
|
|
/// registered INetworkPrefabInstanceHandler implementations
|
|
/// </summary>
|
|
/// <param name="first"></param>
|
|
/// <param name="second"></param>
|
|
/// <returns></returns>
|
|
private int SortNetworkObjects(NetworkObject first, NetworkObject second)
|
|
{
|
|
var doesFirstHaveHandler = m_NetworkManager.PrefabHandler.ContainsHandler(first);
|
|
var doesSecondHaveHandler = m_NetworkManager.PrefabHandler.ContainsHandler(second);
|
|
if (doesFirstHaveHandler != doesSecondHaveHandler)
|
|
{
|
|
if (doesFirstHaveHandler)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client and Server Side:
|
|
/// Serializes data based on the SceneEvent type (<see cref="SceneEventType"/>)
|
|
/// </summary>
|
|
/// <param name="writer"><see cref="FastBufferWriter"/> to write the scene event data</param>
|
|
internal void Serialize(FastBufferWriter writer)
|
|
{
|
|
// Write the scene event type
|
|
writer.WriteValueSafe(SceneEventType);
|
|
|
|
// Write the scene loading mode
|
|
writer.WriteValueSafe(LoadSceneMode);
|
|
|
|
// Write the scene event progress Guid
|
|
if (SceneEventType != SceneEventType.Synchronize)
|
|
{
|
|
writer.WriteValueSafe(SceneEventProgressId);
|
|
}
|
|
|
|
// Write the scene index and handle
|
|
writer.WriteValueSafe(SceneHash);
|
|
writer.WriteValueSafe(SceneHandle);
|
|
|
|
switch (SceneEventType)
|
|
{
|
|
case SceneEventType.Synchronize:
|
|
{
|
|
WriteSceneSynchronizationData(writer);
|
|
break;
|
|
}
|
|
case SceneEventType.Load:
|
|
{
|
|
SerializeScenePlacedObjects(writer);
|
|
break;
|
|
}
|
|
case SceneEventType.SynchronizeComplete:
|
|
{
|
|
WriteClientSynchronizationResults(writer);
|
|
break;
|
|
}
|
|
case SceneEventType.ReSynchronize:
|
|
{
|
|
WriteClientReSynchronizationData(writer);
|
|
break;
|
|
}
|
|
case SceneEventType.LoadEventCompleted:
|
|
case SceneEventType.UnloadEventCompleted:
|
|
{
|
|
WriteSceneEventProgressDone(writer);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Server Side:
|
|
/// Called at the end of a <see cref="SceneEventType.Load"/> event once the scene is loaded and scene placed NetworkObjects
|
|
/// have been locally spawned
|
|
/// </summary>
|
|
internal void WriteSceneSynchronizationData(FastBufferWriter writer)
|
|
{
|
|
// Write the scenes we want to load, in the order we want to load them
|
|
writer.WriteValueSafe(ScenesToSynchronize.ToArray());
|
|
writer.WriteValueSafe(SceneHandlesToSynchronize.ToArray());
|
|
|
|
|
|
// Store our current position in the stream to come back and say how much data we have written
|
|
var positionStart = writer.Position;
|
|
|
|
// Size Place Holder -- Start
|
|
// !!NOTE!!: Since this is a placeholder to be set after we know how much we have written,
|
|
// for stream offset purposes this MUST not be a packed value!
|
|
writer.WriteValueSafe((int)0);
|
|
int totalBytes = 0;
|
|
|
|
// Write the number of NetworkObjects we are serializing
|
|
writer.WriteValueSafe(m_NetworkObjectsSync.Count());
|
|
for (var i = 0; i < m_NetworkObjectsSync.Count(); ++i)
|
|
{
|
|
var noStart = writer.Position;
|
|
var sceneObject = m_NetworkObjectsSync[i].GetMessageSceneObject(TargetClientId);
|
|
writer.WriteValueSafe(m_NetworkObjectsSync[i].gameObject.scene.handle);
|
|
sceneObject.Serialize(writer);
|
|
var noStop = writer.Position;
|
|
totalBytes += (int)(noStop - noStart);
|
|
}
|
|
|
|
// Size Place Holder -- End
|
|
var positionEnd = writer.Position;
|
|
var bytesWritten = (uint)(positionEnd - (positionStart + sizeof(uint)));
|
|
writer.Seek(positionStart);
|
|
// Write the total size written to the stream by NetworkObjects being serialized
|
|
writer.WriteValueSafe(bytesWritten);
|
|
writer.Seek(positionEnd);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Server Side:
|
|
/// Called at the end of a <see cref="SceneEventType.Load"/> event once the scene is loaded and scene placed NetworkObjects
|
|
/// have been locally spawned
|
|
/// Maximum number of objects that could theoretically be synchronized is 65536
|
|
/// </summary>
|
|
internal void SerializeScenePlacedObjects(FastBufferWriter writer)
|
|
{
|
|
var numberOfObjects = (ushort)0;
|
|
var headPosition = writer.Position;
|
|
|
|
// Write our count place holder (must not be packed!)
|
|
writer.WriteValueSafe((ushort)0);
|
|
|
|
foreach (var keyValuePairByGlobalObjectIdHash in m_NetworkManager.SceneManager.ScenePlacedObjects)
|
|
{
|
|
foreach (var keyValuePairBySceneHandle in keyValuePairByGlobalObjectIdHash.Value)
|
|
{
|
|
if (keyValuePairBySceneHandle.Value.Observers.Contains(TargetClientId))
|
|
{
|
|
// Write our server relative scene handle for the NetworkObject being serialized
|
|
writer.WriteValueSafe(keyValuePairBySceneHandle.Key);
|
|
// Serialize the NetworkObject
|
|
var sceneObject = keyValuePairBySceneHandle.Value.GetMessageSceneObject(TargetClientId);
|
|
sceneObject.Serialize(writer);
|
|
numberOfObjects++;
|
|
}
|
|
}
|
|
}
|
|
|
|
var tailPosition = writer.Position;
|
|
// Reposition to our count position to the head before we wrote our object count
|
|
writer.Seek(headPosition);
|
|
// Write number of NetworkObjects serialized (must not be packed!)
|
|
writer.WriteValueSafe(numberOfObjects);
|
|
// Set our position back to the tail
|
|
writer.Seek(tailPosition);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client and Server Side:
|
|
/// Deserialize data based on the SceneEvent type.
|
|
/// </summary>
|
|
/// <param name="reader"></param>
|
|
internal void Deserialize(FastBufferReader reader)
|
|
{
|
|
reader.ReadValueSafe(out SceneEventType);
|
|
reader.ReadValueSafe(out LoadSceneMode);
|
|
|
|
if (SceneEventType != SceneEventType.Synchronize)
|
|
{
|
|
reader.ReadValueSafe(out SceneEventProgressId);
|
|
}
|
|
|
|
reader.ReadValueSafe(out SceneHash);
|
|
reader.ReadValueSafe(out SceneHandle);
|
|
|
|
switch (SceneEventType)
|
|
{
|
|
case SceneEventType.Synchronize:
|
|
{
|
|
CopySceneSynchronizationData(reader);
|
|
break;
|
|
}
|
|
case SceneEventType.SynchronizeComplete:
|
|
{
|
|
CheckClientSynchronizationResults(reader);
|
|
break;
|
|
}
|
|
case SceneEventType.Load:
|
|
{
|
|
unsafe
|
|
{
|
|
// We store off the trailing in-scene placed serialized NetworkObject data to
|
|
// be processed once we are done loading.
|
|
m_HasInternalBuffer = true;
|
|
// We use Allocator.Persistent since scene loading could take longer than 4 frames
|
|
InternalBuffer = new FastBufferReader(reader.GetUnsafePtrAtCurrentPosition(), Allocator.Persistent, reader.Length - reader.Position);
|
|
}
|
|
break;
|
|
}
|
|
case SceneEventType.ReSynchronize:
|
|
{
|
|
ReadClientReSynchronizationData(reader);
|
|
break;
|
|
}
|
|
case SceneEventType.LoadEventCompleted:
|
|
case SceneEventType.UnloadEventCompleted:
|
|
{
|
|
ReadSceneEventProgressDone(reader);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client Side:
|
|
/// Prepares for a scene synchronization event and copies the scene synchronization data
|
|
/// into the internal buffer to be used throughout the synchronization process.
|
|
/// </summary>
|
|
/// <param name="reader"></param>
|
|
internal void CopySceneSynchronizationData(FastBufferReader reader)
|
|
{
|
|
m_NetworkObjectsSync.Clear();
|
|
reader.ReadValueSafe(out uint[] scenesToSynchronize);
|
|
reader.ReadValueSafe(out uint[] sceneHandlesToSynchronize);
|
|
ScenesToSynchronize = new Queue<uint>(scenesToSynchronize);
|
|
SceneHandlesToSynchronize = new Queue<uint>(sceneHandlesToSynchronize);
|
|
|
|
// is not packed!
|
|
reader.ReadValueSafe(out int sizeToCopy);
|
|
unsafe
|
|
{
|
|
if (!reader.TryBeginRead(sizeToCopy))
|
|
{
|
|
throw new OverflowException("Not enough space in the buffer to read recorded synchronization data size.");
|
|
}
|
|
|
|
m_HasInternalBuffer = true;
|
|
// We use Allocator.Persistent since scene synchronization will most likely take longer than 4 frames
|
|
InternalBuffer = new FastBufferReader(reader.GetUnsafePtrAtCurrentPosition(), Allocator.Persistent, sizeToCopy);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client Side:
|
|
/// This needs to occur at the end of a <see cref="SceneEventType.Load"/> event when the scene has finished loading
|
|
/// Maximum number of objects that could theoretically be synchronized is 65536
|
|
/// </summary>
|
|
internal void DeserializeScenePlacedObjects()
|
|
{
|
|
try
|
|
{
|
|
// is not packed!
|
|
InternalBuffer.ReadValueSafe(out ushort newObjectsCount);
|
|
|
|
for (ushort i = 0; i < newObjectsCount; i++)
|
|
{
|
|
InternalBuffer.ReadValueSafe(out int sceneHandle);
|
|
// Set our relative scene to the NetworkObject
|
|
m_NetworkManager.SceneManager.SetTheSceneBeingSynchronized(sceneHandle);
|
|
|
|
// Deserialize the NetworkObject
|
|
var sceneObject = new NetworkObject.SceneObject();
|
|
sceneObject.Deserialize(InternalBuffer);
|
|
NetworkObject.AddSceneObject(sceneObject, InternalBuffer, m_NetworkManager);
|
|
}
|
|
}
|
|
finally
|
|
{
|
|
InternalBuffer.Dispose();
|
|
m_HasInternalBuffer = false;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client Side:
|
|
/// If there happens to be NetworkObjects in the final Event_Sync_Complete message that are no longer spawned,
|
|
/// the server will compile a list and send back an Event_ReSync message to the client. This is where the
|
|
/// client handles any returned values by the server.
|
|
/// </summary>
|
|
/// <param name="reader"></param>
|
|
internal void ReadClientReSynchronizationData(FastBufferReader reader)
|
|
{
|
|
reader.ReadValueSafe(out uint[] networkObjectsToRemove);
|
|
|
|
if (networkObjectsToRemove.Length > 0)
|
|
{
|
|
var networkObjects = UnityEngine.Object.FindObjectsOfType<NetworkObject>();
|
|
var networkObjectIdToNetworkObject = new Dictionary<ulong, NetworkObject>();
|
|
foreach (var networkObject in networkObjects)
|
|
{
|
|
if (!networkObjectIdToNetworkObject.ContainsKey(networkObject.NetworkObjectId))
|
|
{
|
|
networkObjectIdToNetworkObject.Add(networkObject.NetworkObjectId, networkObject);
|
|
}
|
|
}
|
|
|
|
foreach (var networkObjectId in networkObjectsToRemove)
|
|
{
|
|
if (networkObjectIdToNetworkObject.ContainsKey(networkObjectId))
|
|
{
|
|
var networkObject = networkObjectIdToNetworkObject[networkObjectId];
|
|
networkObjectIdToNetworkObject.Remove(networkObjectId);
|
|
|
|
networkObject.IsSpawned = false;
|
|
if (m_NetworkManager.PrefabHandler.ContainsHandler(networkObject))
|
|
{
|
|
if (m_NetworkManager.SpawnManager.SpawnedObjects.ContainsKey(networkObjectId))
|
|
{
|
|
m_NetworkManager.SpawnManager.SpawnedObjects.Remove(networkObjectId);
|
|
}
|
|
if (m_NetworkManager.SpawnManager.SpawnedObjectsList.Contains(networkObject))
|
|
{
|
|
m_NetworkManager.SpawnManager.SpawnedObjectsList.Remove(networkObject);
|
|
}
|
|
NetworkManager.Singleton.PrefabHandler.HandleNetworkPrefabDestroy(networkObject);
|
|
}
|
|
else
|
|
{
|
|
UnityEngine.Object.DestroyImmediate(networkObject.gameObject);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Server Side:
|
|
/// If there happens to be NetworkObjects in the final Event_Sync_Complete message that are no longer spawned,
|
|
/// the server will compile a list and send back an Event_ReSync message to the client.
|
|
/// </summary>
|
|
/// <param name="writer"></param>
|
|
internal void WriteClientReSynchronizationData(FastBufferWriter writer)
|
|
{
|
|
//Write how many objects need to be removed
|
|
writer.WriteValueSafe(m_NetworkObjectsToBeRemoved.ToArray());
|
|
}
|
|
|
|
/// <summary>
|
|
/// Server Side:
|
|
/// Determines if the client needs to be slightly re-synchronized if during the deserialization
|
|
/// process the server finds NetworkObjects that the client still thinks are spawned.
|
|
/// </summary>
|
|
/// <returns></returns>
|
|
internal bool ClientNeedsReSynchronization()
|
|
{
|
|
return (m_NetworkObjectsToBeRemoved.Count > 0);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Server Side:
|
|
/// Determines if the client needs to be re-synchronized if during the deserialization
|
|
/// process the server finds NetworkObjects that the client still thinks are spawned but
|
|
/// have since been despawned.
|
|
/// </summary>
|
|
/// <param name="reader"></param>
|
|
internal void CheckClientSynchronizationResults(FastBufferReader reader)
|
|
{
|
|
m_NetworkObjectsToBeRemoved.Clear();
|
|
reader.ReadValueSafe(out uint networkObjectIdCount);
|
|
for (int i = 0; i < networkObjectIdCount; i++)
|
|
{
|
|
reader.ReadValueSafe(out uint networkObjectId);
|
|
if (!m_NetworkManager.SpawnManager.SpawnedObjects.ContainsKey(networkObjectId))
|
|
{
|
|
m_NetworkObjectsToBeRemoved.Add(networkObjectId);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client Side:
|
|
/// During the deserialization process of the servers Event_Sync, the client builds a list of
|
|
/// all NetworkObjectIds that were spawned. Upon responding to the server with the Event_Sync_Complete
|
|
/// this list is included for the server to review over and determine if the client needs a minor resynchronization
|
|
/// of NetworkObjects that might have been despawned while the client was processing the Event_Sync.
|
|
/// </summary>
|
|
/// <param name="writer"></param>
|
|
internal void WriteClientSynchronizationResults(FastBufferWriter writer)
|
|
{
|
|
//Write how many objects were spawned
|
|
writer.WriteValueSafe((uint)m_NetworkObjectsSync.Count);
|
|
foreach (var networkObject in m_NetworkObjectsSync)
|
|
{
|
|
writer.WriteValueSafe((uint)networkObject.NetworkObjectId);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Client Side:
|
|
/// During the processing of a server sent Event_Sync, this method will be called for each scene once
|
|
/// it is finished loading. The client will also build a list of NetworkObjects that it spawned during
|
|
/// this process which will be used as part of the Event_Sync_Complete response.
|
|
/// </summary>
|
|
/// <param name="networkManager"></param>
|
|
internal void SynchronizeSceneNetworkObjects(NetworkManager networkManager)
|
|
{
|
|
try
|
|
{
|
|
// Process all NetworkObjects for this scene
|
|
InternalBuffer.ReadValueSafe(out int newObjectsCount);
|
|
|
|
for (int i = 0; i < newObjectsCount; i++)
|
|
{
|
|
// We want to make sure for each NetworkObject we have the appropriate scene selected as the scene that is
|
|
// currently being synchronized. This assures in-scene placed NetworkObjects will use the right NetworkObject
|
|
// from the list of populated <see cref="NetworkSceneManager.ScenePlacedObjects"/>
|
|
InternalBuffer.ReadValueSafe(out int handle);
|
|
m_NetworkManager.SceneManager.SetTheSceneBeingSynchronized(handle);
|
|
|
|
var sceneObject = new NetworkObject.SceneObject();
|
|
sceneObject.Deserialize(InternalBuffer);
|
|
|
|
var spawnedNetworkObject = NetworkObject.AddSceneObject(sceneObject, InternalBuffer, networkManager);
|
|
if (!m_NetworkObjectsSync.Contains(spawnedNetworkObject))
|
|
{
|
|
m_NetworkObjectsSync.Add(spawnedNetworkObject);
|
|
}
|
|
}
|
|
}
|
|
finally
|
|
{
|
|
InternalBuffer.Dispose();
|
|
m_HasInternalBuffer = false;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Writes the all clients loaded or unloaded completed and timed out lists
|
|
/// </summary>
|
|
/// <param name="writer"></param>
|
|
internal void WriteSceneEventProgressDone(FastBufferWriter writer)
|
|
{
|
|
writer.WriteValueSafe((ushort)ClientsCompleted.Count);
|
|
foreach (var clientId in ClientsCompleted)
|
|
{
|
|
writer.WriteValueSafe(clientId);
|
|
}
|
|
|
|
writer.WriteValueSafe((ushort)ClientsTimedOut.Count);
|
|
foreach (var clientId in ClientsTimedOut)
|
|
{
|
|
writer.WriteValueSafe(clientId);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reads the all clients loaded or unloaded completed and timed out lists
|
|
/// </summary>
|
|
/// <param name="reader"></param>
|
|
internal void ReadSceneEventProgressDone(FastBufferReader reader)
|
|
{
|
|
reader.ReadValueSafe(out ushort completedCount);
|
|
ClientsCompleted = new List<ulong>();
|
|
for (int i = 0; i < completedCount; i++)
|
|
{
|
|
reader.ReadValueSafe(out ulong clientId);
|
|
ClientsCompleted.Add(clientId);
|
|
}
|
|
|
|
reader.ReadValueSafe(out ushort timedOutCount);
|
|
ClientsTimedOut = new List<ulong>();
|
|
for (int i = 0; i < timedOutCount; i++)
|
|
{
|
|
reader.ReadValueSafe(out ulong clientId);
|
|
ClientsTimedOut.Add(clientId);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Used to release the pooled network buffer
|
|
/// </summary>
|
|
public void Dispose()
|
|
{
|
|
if (m_HasInternalBuffer)
|
|
{
|
|
InternalBuffer.Dispose();
|
|
m_HasInternalBuffer = false;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Constructor for SceneEventData
|
|
/// </summary>
|
|
internal SceneEventData(NetworkManager networkManager)
|
|
{
|
|
m_NetworkManager = networkManager;
|
|
SceneEventId = XXHash.Hash32(Guid.NewGuid().ToString());
|
|
}
|
|
}
|
|
}
|