The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com). ## [2.0.0-exp.2] - 2024-04-02 ### Added - Added updates to all internal messages to account for a distributed authority network session connection. (#2863) - Added `NetworkRigidbodyBase` that provides users with a more customizable network rigidbody, handles both `Rigidbody` and `Rigidbody2D`, and provides an option to make `NetworkTransform` use the rigid body for motion. (#2863) - For a customized `NetworkRigidbodyBase` class: - `NetworkRigidbodyBase.AutoUpdateKinematicState` provides control on whether the kinematic setting will be automatically set or not when ownership changes. - `NetworkRigidbodyBase.AutoSetKinematicOnDespawn` provides control on whether isKinematic will automatically be set to true when the associated `NetworkObject` is despawned. - `NetworkRigidbodyBase.Initialize` is a protected method that, when invoked, will initialize the instance. This includes options to: - Set whether using a `RigidbodyTypes.Rigidbody` or `RigidbodyTypes.Rigidbody2D`. - Includes additional optional parameters to set the `NetworkTransform`, `Rigidbody`, and `Rigidbody2d` to use. - Provides additional public methods: - `NetworkRigidbodyBase.GetPosition` to return the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting). - `NetworkRigidbodyBase.GetRotation` to return the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting). - `NetworkRigidbodyBase.MovePosition` to move to the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting). - `NetworkRigidbodyBase.MoveRotation` to move to the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting). - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting). - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting). - `NetworkRigidbodyBase.SetPosition` to set the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting). - `NetworkRigidbodyBase.SetRotation` to set the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting). - `NetworkRigidbodyBase.ApplyCurrentTransform` to set the position and rotation of the `Rigidbody` or `Rigidbody2d` based on the associated `GameObject` transform (depending upon its initialized setting). - `NetworkRigidbodyBase.WakeIfSleeping` to wake up the rigid body if sleeping. - `NetworkRigidbodyBase.SleepRigidbody` to put the rigid body to sleep. - `NetworkRigidbodyBase.IsKinematic` to determine if the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) is currently kinematic. - `NetworkRigidbodyBase.SetIsKinematic` to set the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) current kinematic state. - `NetworkRigidbodyBase.ResetInterpolation` to reset the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) back to its original interpolation value when initialized. - Now includes a `MonoBehaviour.FixedUpdate` implementation that will update the assigned `NetworkTransform` when `NetworkRigidbodyBase.UseRigidBodyForMotion` is true. (#2863) - Added `RigidbodyContactEventManager` that provides a more optimized way to process collision enter and collision stay events as opposed to the `Monobehaviour` approach. (#2863) - Can be used in client-server and distributed authority modes, but is particularly useful in distributed authority. - Added rigid body motion updates to `NetworkTransform` which allows users to set interolation on rigid bodies. (#2863) - Extrapolation is only allowed on authoritative instances, but custom class derived from `NetworkRigidbodyBase` or `NetworkRigidbody` or `NetworkRigidbody2D` automatically switches non-authoritative instances to interpolation if set to extrapolation. - Added distributed authority mode support to `NetworkAnimator`. (#2863) - Added session mode selection to `NetworkManager` inspector view. (#2863) - Added distributed authority permissions feature. (#2863) - Added distributed authority mode specific `NetworkObject` permissions flags (Distributable, Transferable, and RequestRequired). (#2863) - Added distributed authority mode specific `NetworkObject.SetOwnershipStatus` method that applies one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863) - Added distributed authority mode specific `NetworkObject.RemoveOwnershipStatus` method that removes one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863) - Added distributed authority mode specific `NetworkObject.HasOwnershipStatus` method that will return (true or false) whether one or more ownership flags is set. (#2863) - Added distributed authority mode specific `NetworkObject.SetOwnershipLock` method that locks ownership of a `NetworkObject` to prevent ownership from changing until the current owner releases the lock. (#2863) - Added distributed authority mode specific `NetworkObject.RequestOwnership` method that sends an ownership request to the current owner of a spawned `NetworkObject` instance. (#2863) - Added distributed authority mode specific `NetworkObject.OnOwnershipRequested` callback handler that is invoked on the owner/authoritative side when a non-owner requests ownership. Depending upon the boolean returned value depends upon whether the request is approved or denied. (#2863) - Added distributed authority mode specific `NetworkObject.OnOwnershipRequestResponse` callback handler that is invoked when a non-owner's request has been processed. This callback includes a `NetworkObjet.OwnershipRequestResponseStatus` response parameter that describes whether the request was approved or the reason why it was not approved. (#2863) - Added distributed authority mode specific `NetworkObject.DeferDespawn` method that defers the despawning of `NetworkObject` instances on non-authoritative clients based on the tick offset parameter. (#2863) - Added distributed authority mode specific `NetworkObject.OnDeferredDespawnComplete` callback handler that can be used to further control when deferring the despawning of a `NetworkObject` on non-authoritative instances. (#2863) - Added `NetworkClient.SessionModeType` as one way to determine the current session mode of the network session a client is connected to. (#2863) - Added distributed authority mode specific `NetworkClient.IsSessionOwner` property to determine if the current local client is the current session owner of a distributed authority session. (#2863) - Added distributed authority mode specific client side spawning capabilities. When running in distributed authority mode, clients can instantiate and spawn `NetworkObject` instances (the local client is authomatically the owner of the spawned object). (#2863) - This is useful to better visually synchronize owner authoritative motion models and newly spawned `NetworkObject` instances (i.e. projectiles for example). - Added distributed authority mode specific client side player spawning capabilities. Clients will automatically spawn their associated player object locally. (#2863) - Added distributed authority mode specific `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property (default is true) to provide control over the automatic spawning of player prefabs on the local client side. (#2863) - Added distributed authority mode specific `NetworkManager.OnFetchLocalPlayerPrefabToSpawn` callback that, when assigned, will allow the local client to provide the player prefab to be spawned for the local client. (#2863) - This is only invoked if the `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property is set to true. - Added distributed authority mode specific `NetworkBehaviour.HasAuthority` property that determines if the local client has authority over the associated `NetworkObject` instance (typical use case is within a `NetworkBehaviour` script much like that of `IsServer` or `IsClient`). (#2863) - Added distributed authority mode specific `NetworkBehaviour.IsSessionOwner` property that determines if the local client is the session owner (typical use case would be to determine if the local client can has scene management authority within a `NetworkBehaviour` script). (#2863) - Added support for distributed authority mode scene management where the currently assigned session owner can start scene events (i.e. scene loading and scene unloading). (#2863) ### Fixed - Fixed issue where the host was not invoking `OnClientDisconnectCallback` for its own local client when internally shutting down. (#2822) - Fixed issue where NetworkTransform could potentially attempt to "unregister" a named message prior to it being registered. (#2807) - Fixed issue where in-scene placed `NetworkObject`s with complex nested children `NetworkObject`s (more than one child in depth) would not synchronize properly if WorldPositionStays was set to true. (#2796) ### Changed - Changed client side awareness of other clients is now the same as a server or host. (#2863) - Changed `NetworkManager.ConnectedClients` can now be accessed by both server and clients. (#2863) - Changed `NetworkManager.ConnectedClientsList` can now be accessed by both server and clients. (#2863) - Changed `NetworkTransform` defaults to owner authoritative when connected to a distributed authority session. (#2863) - Changed `NetworkVariable` defaults to owner write and everyone read permissions when connected to a distributed authority session (even if declared with server read or write permissions). (#2863) - Changed `NetworkObject` no longer implements the `MonoBehaviour.Update` method in order to determine whether a `NetworkObject` instance has been migrated to a different scene. Instead, only `NetworkObjects` with the `SceneMigrationSynchronization` property set will be updated internally during the `NetworkUpdateStage.PostLateUpdate` by `NetworkManager`. (#2863) - Changed `NetworkManager` inspector view layout where properties are now organized by category. (#2863) - Changed `NetworkTransform` to now use `NetworkTransformMessage` as opposed to named messages for NetworkTransformState updates. (#2810) - Changed `CustomMessageManager` so it no longer attempts to register or "unregister" a null or empty string and will log an error if this condition occurs. (#2807)
770 lines
32 KiB
C#
770 lines
32 KiB
C#
using System;
|
|
using System.Collections.Generic;
|
|
using Unity.Collections;
|
|
using Unity.Collections.LowLevel.Unsafe;
|
|
using Unity.Mathematics;
|
|
|
|
namespace Unity.Netcode
|
|
{
|
|
internal static class CollectionSerializationUtility
|
|
{
|
|
public static void WriteNativeArrayDelta<T>(FastBufferWriter writer, ref NativeArray<T> value, ref NativeArray<T> previousValue) where T : unmanaged
|
|
{
|
|
// This bit vector serializes the list of which fields have changed using 1 bit per field.
|
|
// This will always be 1 bit per field of the whole array (rounded up to the nearest 8 bits)
|
|
// even if there is only one change, so as compared to serializing the index with each item,
|
|
// this will use more bandwidth when the overall bandwidth usage is small and the array is large,
|
|
// but less when the overall bandwidth usage is large. So it optimizes for the worst case while accepting
|
|
// some reduction in efficiency in the best case.
|
|
using var changes = new ResizableBitVector(Allocator.Temp);
|
|
int minLength = math.min(value.Length, previousValue.Length);
|
|
var numChanges = 0;
|
|
// Iterate the array, checking which values have changed and marking that in the bit vector
|
|
for (var i = 0; i < minLength; ++i)
|
|
{
|
|
var val = value[i];
|
|
var prevVal = previousValue[i];
|
|
if (!NetworkVariableSerialization<T>.AreEqual(ref val, ref prevVal))
|
|
{
|
|
++numChanges;
|
|
changes.Set(i);
|
|
}
|
|
}
|
|
|
|
// Mark any newly added items as well
|
|
// We don't need to mark removed items because they are captured by serializing the length
|
|
for (var i = previousValue.Length; i < value.Length; ++i)
|
|
{
|
|
++numChanges;
|
|
changes.Set(i);
|
|
}
|
|
|
|
// If the size of serializing the dela is greater than the size of serializing the whole array (i.e.,
|
|
// because almost the entire array has changed and the overhead of the change set increases bandwidth),
|
|
// then we just do a normal full serialization instead of a delta.
|
|
if (changes.GetSerializedSize() + FastBufferWriter.GetWriteSize<T>() * numChanges > FastBufferWriter.GetWriteSize<T>() * value.Length)
|
|
{
|
|
// 1 = full serialization
|
|
writer.WriteByteSafe(1);
|
|
writer.WriteValueSafe(value);
|
|
return;
|
|
}
|
|
// 0 = delta serialization
|
|
writer.WriteByte(0);
|
|
// Write the length, which will be used on the read side to resize the array
|
|
BytePacker.WriteValuePacked(writer, value.Length);
|
|
writer.WriteValueSafe(changes);
|
|
unsafe
|
|
{
|
|
var ptr = (T*)value.GetUnsafePtr();
|
|
var prevPtr = (T*)previousValue.GetUnsafePtr();
|
|
for (int i = 0; i < value.Length; ++i)
|
|
{
|
|
if (changes.IsSet(i))
|
|
{
|
|
if (i < previousValue.Length)
|
|
{
|
|
// If we have an item in the previous array for this index, we can do nested deltas!
|
|
NetworkVariableSerialization<T>.WriteDelta(writer, ref ptr[i], ref prevPtr[i]);
|
|
}
|
|
else
|
|
{
|
|
// If not, just write it normally
|
|
NetworkVariableSerialization<T>.Write(writer, ref ptr[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
public static void ReadNativeArrayDelta<T>(FastBufferReader reader, ref NativeArray<T> value) where T : unmanaged
|
|
{
|
|
// 1 = full serialization, 0 = delta serialization
|
|
reader.ReadByteSafe(out byte full);
|
|
if (full == 1)
|
|
{
|
|
// If we're doing full serialization, we fall back on reading the whole array.
|
|
value.Dispose();
|
|
reader.ReadValueSafe(out value, Allocator.Persistent);
|
|
return;
|
|
}
|
|
// If not, first read the length and the change bits
|
|
ByteUnpacker.ReadValuePacked(reader, out int length);
|
|
var changes = new ResizableBitVector(Allocator.Temp);
|
|
using var toDispose = changes;
|
|
{
|
|
reader.ReadNetworkSerializableInPlace(ref changes);
|
|
|
|
// If the length has changed, we need to resize.
|
|
// NativeArray is not resizeable, so we have to dispose and allocate a new one.
|
|
var previousLength = value.Length;
|
|
if (length != value.Length)
|
|
{
|
|
var newArray = new NativeArray<T>(length, Allocator.Persistent);
|
|
unsafe
|
|
{
|
|
UnsafeUtility.MemCpy(newArray.GetUnsafePtr(), value.GetUnsafePtr(), math.min(newArray.Length * sizeof(T), value.Length * sizeof(T)));
|
|
}
|
|
value.Dispose();
|
|
value = newArray;
|
|
}
|
|
|
|
unsafe
|
|
{
|
|
var ptr = (T*)value.GetUnsafePtr();
|
|
for (var i = 0; i < value.Length; ++i)
|
|
{
|
|
if (changes.IsSet(i))
|
|
{
|
|
if (i < previousLength)
|
|
{
|
|
// If we have an item to read a delta into, read it as a delta
|
|
NetworkVariableSerialization<T>.ReadDelta(reader, ref ptr[i]);
|
|
}
|
|
else
|
|
{
|
|
// If not, read as a standard element
|
|
NetworkVariableSerialization<T>.Read(reader, ref ptr[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
public static void WriteListDelta<T>(FastBufferWriter writer, ref List<T> value, ref List<T> previousValue)
|
|
{
|
|
// Lists can be null, so we have to handle that case.
|
|
// We do that by marking this as a full serialization and using the existing null handling logic
|
|
// in NetworkVariableSerialization<List<T>>
|
|
if (value == null || previousValue == null)
|
|
{
|
|
writer.WriteByteSafe(1);
|
|
NetworkVariableSerialization<List<T>>.Write(writer, ref value);
|
|
return;
|
|
}
|
|
// This bit vector serializes the list of which fields have changed using 1 bit per field.
|
|
// This will always be 1 bit per field of the whole array (rounded up to the nearest 8 bits)
|
|
// even if there is only one change, so as compared to serializing the index with each item,
|
|
// this will use more bandwidth when the overall bandwidth usage is small and the array is large,
|
|
// but less when the overall bandwidth usage is large. So it optimizes for the worst case while accepting
|
|
// some reduction in efficiency in the best case.
|
|
using var changes = new ResizableBitVector(Allocator.Temp);
|
|
int minLength = math.min(value.Count, previousValue.Count);
|
|
var numChanges = 0;
|
|
// Iterate the list, checking which values have changed and marking that in the bit vector
|
|
for (var i = 0; i < minLength; ++i)
|
|
{
|
|
var val = value[i];
|
|
var prevVal = previousValue[i];
|
|
if (!NetworkVariableSerialization<T>.AreEqual(ref val, ref prevVal))
|
|
{
|
|
++numChanges;
|
|
changes.Set(i);
|
|
}
|
|
}
|
|
|
|
// Mark any newly added items as well
|
|
// We don't need to mark removed items because they are captured by serializing the length
|
|
for (var i = previousValue.Count; i < value.Count; ++i)
|
|
{
|
|
++numChanges;
|
|
changes.Set(i);
|
|
}
|
|
|
|
// If the size of serializing the dela is greater than the size of serializing the whole array (i.e.,
|
|
// because almost the entire array has changed and the overhead of the change set increases bandwidth),
|
|
// then we just do a normal full serialization instead of a delta.
|
|
// In the case of List<T>, it's difficult to know exactly what the serialized size is going to be before
|
|
// we serialize it, so we fudge it.
|
|
if (numChanges >= value.Count * 0.9)
|
|
{
|
|
// 1 = full serialization
|
|
writer.WriteByteSafe(1);
|
|
NetworkVariableSerialization<List<T>>.Write(writer, ref value);
|
|
return;
|
|
}
|
|
|
|
// 0 = delta serialization
|
|
writer.WriteByteSafe(0);
|
|
// Write the length, which will be used on the read side to resize the list
|
|
BytePacker.WriteValuePacked(writer, value.Count);
|
|
writer.WriteValueSafe(changes);
|
|
for (int i = 0; i < value.Count; ++i)
|
|
{
|
|
if (changes.IsSet(i))
|
|
{
|
|
var reffable = value[i];
|
|
if (i < previousValue.Count)
|
|
{
|
|
// If we have an item in the previous array for this index, we can do nested deltas!
|
|
var prevReffable = previousValue[i];
|
|
NetworkVariableSerialization<T>.WriteDelta(writer, ref reffable, ref prevReffable);
|
|
}
|
|
else
|
|
{
|
|
// If not, just write it normally.
|
|
NetworkVariableSerialization<T>.Write(writer, ref reffable);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
public static void ReadListDelta<T>(FastBufferReader reader, ref List<T> value)
|
|
{
|
|
// 1 = full serialization, 0 = delta serialization
|
|
reader.ReadByteSafe(out byte full);
|
|
if (full == 1)
|
|
{
|
|
// If we're doing full serialization, we fall back on reading the whole list.
|
|
NetworkVariableSerialization<List<T>>.Read(reader, ref value);
|
|
return;
|
|
}
|
|
// If not, first read the length and the change bits
|
|
ByteUnpacker.ReadValuePacked(reader, out int length);
|
|
var changes = new ResizableBitVector(Allocator.Temp);
|
|
using var toDispose = changes;
|
|
{
|
|
reader.ReadNetworkSerializableInPlace(ref changes);
|
|
|
|
// If the list shrank, we need to resize it down.
|
|
// List<T> has no method to reserve space for future elements,
|
|
// so if we have to grow it, we just do that using Add() below.
|
|
if (length < value.Count)
|
|
{
|
|
value.RemoveRange(length, value.Count - length);
|
|
}
|
|
|
|
for (var i = 0; i < length; ++i)
|
|
{
|
|
if (changes.IsSet(i))
|
|
{
|
|
if (i < value.Count)
|
|
{
|
|
// If we have an item to read a delta into, read it as a delta
|
|
T item = value[i];
|
|
NetworkVariableSerialization<T>.ReadDelta(reader, ref item);
|
|
value[i] = item;
|
|
}
|
|
else
|
|
{
|
|
// If not, just read it as a standard item.
|
|
T item = default;
|
|
NetworkVariableSerialization<T>.Read(reader, ref item);
|
|
value.Add(item);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// For HashSet and Dictionary, we need to have some local space to hold lists we need to serialize.
|
|
// We don't want to do allocations all the time and we know each one needs a maximum of three lists,
|
|
// so we're going to keep static lists that we can reuse in these methods.
|
|
private static class ListCache<T>
|
|
{
|
|
private static List<T> s_AddedList = new List<T>();
|
|
private static List<T> s_RemovedList = new List<T>();
|
|
private static List<T> s_ChangedList = new List<T>();
|
|
|
|
public static List<T> GetAddedList()
|
|
{
|
|
s_AddedList.Clear();
|
|
return s_AddedList;
|
|
}
|
|
public static List<T> GetRemovedList()
|
|
{
|
|
s_RemovedList.Clear();
|
|
return s_RemovedList;
|
|
}
|
|
public static List<T> GetChangedList()
|
|
{
|
|
s_ChangedList.Clear();
|
|
return s_ChangedList;
|
|
}
|
|
}
|
|
|
|
public static void WriteHashSetDelta<T>(FastBufferWriter writer, ref HashSet<T> value, ref HashSet<T> previousValue) where T : IEquatable<T>
|
|
{
|
|
// HashSets can be null, so we have to handle that case.
|
|
// We do that by marking this as a full serialization and using the existing null handling logic
|
|
// in NetworkVariableSerialization<HashSet<T>>
|
|
if (value == null || previousValue == null)
|
|
{
|
|
writer.WriteByteSafe(1);
|
|
NetworkVariableSerialization<HashSet<T>>.Write(writer, ref value);
|
|
return;
|
|
}
|
|
// No changed array because a set can't have a "changed" element, only added and removed.
|
|
var added = ListCache<T>.GetAddedList();
|
|
var removed = ListCache<T>.GetRemovedList();
|
|
// collect the new elements
|
|
foreach (var item in value)
|
|
{
|
|
if (!previousValue.Contains(item))
|
|
{
|
|
added.Add(item);
|
|
}
|
|
}
|
|
|
|
// collect the removed elements
|
|
foreach (var item in previousValue)
|
|
{
|
|
if (!value.Contains(item))
|
|
{
|
|
removed.Add(item);
|
|
}
|
|
}
|
|
|
|
// If we've got more changes than total items, we just do a full serialization
|
|
if (added.Count + removed.Count >= value.Count)
|
|
{
|
|
writer.WriteByteSafe(1);
|
|
NetworkVariableSerialization<HashSet<T>>.Write(writer, ref value);
|
|
return;
|
|
}
|
|
|
|
writer.WriteByteSafe(0);
|
|
// Write out the added and removed arrays.
|
|
writer.WriteValueSafe(added.Count);
|
|
for (var i = 0; i < added.Count; ++i)
|
|
{
|
|
var item = added[i];
|
|
NetworkVariableSerialization<T>.Write(writer, ref item);
|
|
}
|
|
writer.WriteValueSafe(removed.Count);
|
|
for (var i = 0; i < removed.Count; ++i)
|
|
{
|
|
var item = removed[i];
|
|
NetworkVariableSerialization<T>.Write(writer, ref item);
|
|
}
|
|
}
|
|
|
|
public static void ReadHashSetDelta<T>(FastBufferReader reader, ref HashSet<T> value) where T : IEquatable<T>
|
|
{
|
|
// 1 = full serialization, 0 = delta serialization
|
|
reader.ReadByteSafe(out byte full);
|
|
if (full != 0)
|
|
{
|
|
NetworkVariableSerialization<HashSet<T>>.Read(reader, ref value);
|
|
return;
|
|
}
|
|
// Read in the added and removed values
|
|
reader.ReadValueSafe(out int addedCount);
|
|
for (var i = 0; i < addedCount; ++i)
|
|
{
|
|
T item = default;
|
|
NetworkVariableSerialization<T>.Read(reader, ref item);
|
|
value.Add(item);
|
|
}
|
|
reader.ReadValueSafe(out int removedCount);
|
|
for (var i = 0; i < removedCount; ++i)
|
|
{
|
|
T item = default;
|
|
NetworkVariableSerialization<T>.Read(reader, ref item);
|
|
value.Remove(item);
|
|
}
|
|
}
|
|
public static void WriteDictionaryDelta<TKey, TVal>(FastBufferWriter writer, ref Dictionary<TKey, TVal> value, ref Dictionary<TKey, TVal> previousValue)
|
|
where TKey : IEquatable<TKey>
|
|
{
|
|
if (value == null || previousValue == null)
|
|
{
|
|
writer.WriteByteSafe(1);
|
|
NetworkVariableSerialization<Dictionary<TKey, TVal>>.Write(writer, ref value);
|
|
return;
|
|
}
|
|
var added = ListCache<KeyValuePair<TKey, TVal>>.GetAddedList();
|
|
var changed = ListCache<KeyValuePair<TKey, TVal>>.GetRemovedList();
|
|
var removed = ListCache<KeyValuePair<TKey, TVal>>.GetChangedList();
|
|
// Collect items that have been added or have changed
|
|
foreach (var item in value)
|
|
{
|
|
var val = item.Value;
|
|
var hasPrevVal = previousValue.TryGetValue(item.Key, out var prevVal);
|
|
if (!hasPrevVal)
|
|
{
|
|
added.Add(item);
|
|
}
|
|
else if (!NetworkVariableSerialization<TVal>.AreEqual(ref val, ref prevVal))
|
|
{
|
|
changed.Add(item);
|
|
}
|
|
}
|
|
|
|
// collect the items that have been removed
|
|
foreach (var item in previousValue)
|
|
{
|
|
if (!value.ContainsKey(item.Key))
|
|
{
|
|
removed.Add(item);
|
|
}
|
|
}
|
|
|
|
// If there are more changes than total values, just do a full serialization
|
|
if (added.Count + removed.Count + changed.Count >= value.Count)
|
|
{
|
|
writer.WriteByteSafe(1);
|
|
NetworkVariableSerialization<Dictionary<TKey, TVal>>.Write(writer, ref value);
|
|
return;
|
|
}
|
|
|
|
writer.WriteByteSafe(0);
|
|
// Else, write out the added, removed, and changed arrays
|
|
writer.WriteValueSafe(added.Count);
|
|
for (var i = 0; i < added.Count; ++i)
|
|
{
|
|
(var key, var val) = (added[i].Key, added[i].Value);
|
|
NetworkVariableSerialization<TKey>.Write(writer, ref key);
|
|
NetworkVariableSerialization<TVal>.Write(writer, ref val);
|
|
}
|
|
writer.WriteValueSafe(removed.Count);
|
|
for (var i = 0; i < removed.Count; ++i)
|
|
{
|
|
var key = removed[i].Key;
|
|
NetworkVariableSerialization<TKey>.Write(writer, ref key);
|
|
}
|
|
writer.WriteValueSafe(changed.Count);
|
|
for (var i = 0; i < changed.Count; ++i)
|
|
{
|
|
(var key, var val) = (changed[i].Key, changed[i].Value);
|
|
NetworkVariableSerialization<TKey>.Write(writer, ref key);
|
|
NetworkVariableSerialization<TVal>.Write(writer, ref val);
|
|
}
|
|
}
|
|
|
|
public static void ReadDictionaryDelta<TKey, TVal>(FastBufferReader reader, ref Dictionary<TKey, TVal> value)
|
|
where TKey : IEquatable<TKey>
|
|
{
|
|
// 1 = full serialization, 0 = delta serialization
|
|
reader.ReadByteSafe(out byte full);
|
|
if (full != 0)
|
|
{
|
|
NetworkVariableSerialization<Dictionary<TKey, TVal>>.Read(reader, ref value);
|
|
return;
|
|
}
|
|
// Added
|
|
reader.ReadValueSafe(out int length);
|
|
for (var i = 0; i < length; ++i)
|
|
{
|
|
(TKey key, TVal val) = (default, default);
|
|
NetworkVariableSerialization<TKey>.Read(reader, ref key);
|
|
NetworkVariableSerialization<TVal>.Read(reader, ref val);
|
|
value.Add(key, val);
|
|
}
|
|
// Removed
|
|
reader.ReadValueSafe(out length);
|
|
for (var i = 0; i < length; ++i)
|
|
{
|
|
TKey key = default;
|
|
NetworkVariableSerialization<TKey>.Read(reader, ref key);
|
|
value.Remove(key);
|
|
}
|
|
// Changed
|
|
reader.ReadValueSafe(out length);
|
|
for (var i = 0; i < length; ++i)
|
|
{
|
|
(TKey key, TVal val) = (default, default);
|
|
NetworkVariableSerialization<TKey>.Read(reader, ref key);
|
|
NetworkVariableSerialization<TVal>.Read(reader, ref val);
|
|
value[key] = val;
|
|
}
|
|
}
|
|
|
|
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
|
|
public static void WriteNativeListDelta<T>(FastBufferWriter writer, ref NativeList<T> value, ref NativeList<T> previousValue) where T : unmanaged
|
|
{
|
|
// See WriteListDelta and WriteNativeArrayDelta to understand most of this. It's basically the same,
|
|
// just adjusted for the NativeList API
|
|
using var changes = new ResizableBitVector(Allocator.Temp);
|
|
int minLength = math.min(value.Length, previousValue.Length);
|
|
var numChanges = 0;
|
|
for (var i = 0; i < minLength; ++i)
|
|
{
|
|
var val = value[i];
|
|
var prevVal = previousValue[i];
|
|
if (!NetworkVariableSerialization<T>.AreEqual(ref val, ref prevVal))
|
|
{
|
|
++numChanges;
|
|
changes.Set(i);
|
|
}
|
|
}
|
|
|
|
for (var i = previousValue.Length; i < value.Length; ++i)
|
|
{
|
|
++numChanges;
|
|
changes.Set(i);
|
|
}
|
|
|
|
if (changes.GetSerializedSize() + FastBufferWriter.GetWriteSize<T>() * numChanges > FastBufferWriter.GetWriteSize<T>() * value.Length)
|
|
{
|
|
writer.WriteByteSafe(1);
|
|
writer.WriteValueSafe(value);
|
|
return;
|
|
}
|
|
|
|
writer.WriteByte(0);
|
|
BytePacker.WriteValuePacked(writer, value.Length);
|
|
writer.WriteValueSafe(changes);
|
|
unsafe
|
|
{
|
|
#if UTP_TRANSPORT_2_0_ABOVE
|
|
var ptr = value.GetUnsafePtr();
|
|
var prevPtr = previousValue.GetUnsafePtr();
|
|
#else
|
|
var ptr = (T*)value.GetUnsafePtr();
|
|
var prevPtr = (T*)previousValue.GetUnsafePtr();
|
|
#endif
|
|
for (int i = 0; i < value.Length; ++i)
|
|
{
|
|
if (changes.IsSet(i))
|
|
{
|
|
if (i < previousValue.Length)
|
|
{
|
|
NetworkVariableSerialization<T>.WriteDelta(writer, ref ptr[i], ref prevPtr[i]);
|
|
}
|
|
else
|
|
{
|
|
NetworkVariableSerialization<T>.Write(writer, ref ptr[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
public static void ReadNativeListDelta<T>(FastBufferReader reader, ref NativeList<T> value) where T : unmanaged
|
|
{
|
|
// See ReadListDelta and ReadNativeArrayDelta to understand most of this. It's basically the same,
|
|
// just adjusted for the NativeList API
|
|
reader.ReadByteSafe(out byte full);
|
|
if (full == 1)
|
|
{
|
|
reader.ReadValueSafeInPlace(ref value);
|
|
return;
|
|
}
|
|
ByteUnpacker.ReadValuePacked(reader, out int length);
|
|
var changes = new ResizableBitVector(Allocator.Temp);
|
|
using var toDispose = changes;
|
|
{
|
|
reader.ReadNetworkSerializableInPlace(ref changes);
|
|
|
|
var previousLength = value.Length;
|
|
// The one big difference between this and NativeArray/List is that NativeList supports
|
|
// easy and fast resizing and reserving space.
|
|
if (length != value.Length)
|
|
{
|
|
value.Resize(length, NativeArrayOptions.UninitializedMemory);
|
|
}
|
|
|
|
unsafe
|
|
{
|
|
#if UTP_TRANSPORT_2_0_ABOVE
|
|
var ptr = value.GetUnsafePtr();
|
|
#else
|
|
var ptr = (T*)value.GetUnsafePtr();
|
|
#endif
|
|
for (var i = 0; i < value.Length; ++i)
|
|
{
|
|
if (changes.IsSet(i))
|
|
{
|
|
if (i < previousLength)
|
|
{
|
|
NetworkVariableSerialization<T>.ReadDelta(reader, ref ptr[i]);
|
|
}
|
|
else
|
|
{
|
|
NetworkVariableSerialization<T>.Read(reader, ref ptr[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public static unsafe void WriteNativeHashSetDelta<T>(FastBufferWriter writer, ref NativeHashSet<T> value, ref NativeHashSet<T> previousValue) where T : unmanaged, IEquatable<T>
|
|
{
|
|
// See WriteHashSet; this is the same algorithm, adjusted for the NativeHashSet API
|
|
var added = stackalloc T[value.Count];
|
|
var removed = stackalloc T[previousValue.Count];
|
|
var addedCount = 0;
|
|
var removedCount = 0;
|
|
foreach (var item in value)
|
|
{
|
|
if (!previousValue.Contains(item))
|
|
{
|
|
added[addedCount] = item;
|
|
++addedCount;
|
|
}
|
|
}
|
|
|
|
foreach (var item in previousValue)
|
|
{
|
|
if (!value.Contains(item))
|
|
{
|
|
removed[removedCount] = item;
|
|
++removedCount;
|
|
}
|
|
}
|
|
#if UTP_TRANSPORT_2_0_ABOVE
|
|
if (addedCount + removedCount >= value.Count)
|
|
#else
|
|
if (addedCount + removedCount >= value.Count())
|
|
#endif
|
|
{
|
|
writer.WriteByteSafe(1);
|
|
writer.WriteValueSafe(value);
|
|
return;
|
|
}
|
|
|
|
writer.WriteByteSafe(0);
|
|
writer.WriteValueSafe(addedCount);
|
|
for (var i = 0; i < addedCount; ++i)
|
|
{
|
|
NetworkVariableSerialization<T>.Write(writer, ref added[i]);
|
|
}
|
|
writer.WriteValueSafe(removedCount);
|
|
for (var i = 0; i < removedCount; ++i)
|
|
{
|
|
NetworkVariableSerialization<T>.Write(writer, ref removed[i]);
|
|
}
|
|
}
|
|
|
|
public static void ReadNativeHashSetDelta<T>(FastBufferReader reader, ref NativeHashSet<T> value) where T : unmanaged, IEquatable<T>
|
|
{
|
|
// See ReadHashSet; this is the same algorithm, adjusted for the NativeHashSet API
|
|
reader.ReadByteSafe(out byte full);
|
|
if (full != 0)
|
|
{
|
|
reader.ReadValueSafeInPlace(ref value);
|
|
return;
|
|
}
|
|
reader.ReadValueSafe(out int addedCount);
|
|
for (var i = 0; i < addedCount; ++i)
|
|
{
|
|
T item = default;
|
|
NetworkVariableSerialization<T>.Read(reader, ref item);
|
|
value.Add(item);
|
|
}
|
|
reader.ReadValueSafe(out int removedCount);
|
|
for (var i = 0; i < removedCount; ++i)
|
|
{
|
|
T item = default;
|
|
NetworkVariableSerialization<T>.Read(reader, ref item);
|
|
value.Remove(item);
|
|
}
|
|
}
|
|
|
|
public static unsafe void WriteNativeHashMapDelta<TKey, TVal>(FastBufferWriter writer, ref NativeHashMap<TKey, TVal> value, ref NativeHashMap<TKey, TVal> previousValue)
|
|
where TKey : unmanaged, IEquatable<TKey>
|
|
where TVal : unmanaged
|
|
{
|
|
// See WriteDictionary; this is the same algorithm, adjusted for the NativeHashMap API
|
|
#if UTP_TRANSPORT_2_0_ABOVE
|
|
var added = stackalloc KVPair<TKey, TVal>[value.Count];
|
|
var changed = stackalloc KVPair<TKey, TVal>[value.Count];
|
|
var removed = stackalloc KVPair<TKey, TVal>[previousValue.Count];
|
|
#else
|
|
var added = stackalloc KeyValue<TKey, TVal>[value.Count()];
|
|
var changed = stackalloc KeyValue<TKey, TVal>[value.Count()];
|
|
var removed = stackalloc KeyValue<TKey, TVal>[previousValue.Count()];
|
|
#endif
|
|
var addedCount = 0;
|
|
var changedCount = 0;
|
|
var removedCount = 0;
|
|
foreach (var item in value)
|
|
{
|
|
|
|
var hasPrevVal = previousValue.TryGetValue(item.Key, out var prevVal);
|
|
if (!hasPrevVal)
|
|
{
|
|
added[addedCount] = item;
|
|
++addedCount;
|
|
}
|
|
else if (!NetworkVariableSerialization<TVal>.AreEqual(ref item.Value, ref prevVal))
|
|
{
|
|
changed[changedCount] = item;
|
|
++changedCount;
|
|
}
|
|
}
|
|
|
|
foreach (var item in previousValue)
|
|
{
|
|
if (!value.ContainsKey(item.Key))
|
|
{
|
|
removed[removedCount] = item;
|
|
++removedCount;
|
|
}
|
|
}
|
|
|
|
#if UTP_TRANSPORT_2_0_ABOVE
|
|
if (addedCount + removedCount + changedCount >= value.Count)
|
|
#else
|
|
if (addedCount + removedCount + changedCount >= value.Count())
|
|
#endif
|
|
{
|
|
writer.WriteByteSafe(1);
|
|
writer.WriteValueSafe(value);
|
|
return;
|
|
}
|
|
|
|
writer.WriteByteSafe(0);
|
|
writer.WriteValueSafe(addedCount);
|
|
for (var i = 0; i < addedCount; ++i)
|
|
{
|
|
(var key, var val) = (added[i].Key, added[i].Value);
|
|
NetworkVariableSerialization<TKey>.Write(writer, ref key);
|
|
NetworkVariableSerialization<TVal>.Write(writer, ref val);
|
|
}
|
|
writer.WriteValueSafe(removedCount);
|
|
for (var i = 0; i < removedCount; ++i)
|
|
{
|
|
var key = removed[i].Key;
|
|
NetworkVariableSerialization<TKey>.Write(writer, ref key);
|
|
}
|
|
writer.WriteValueSafe(changedCount);
|
|
for (var i = 0; i < changedCount; ++i)
|
|
{
|
|
(var key, var val) = (changed[i].Key, changed[i].Value);
|
|
NetworkVariableSerialization<TKey>.Write(writer, ref key);
|
|
NetworkVariableSerialization<TVal>.Write(writer, ref val);
|
|
}
|
|
}
|
|
|
|
public static void ReadNativeHashMapDelta<TKey, TVal>(FastBufferReader reader, ref NativeHashMap<TKey, TVal> value)
|
|
where TKey : unmanaged, IEquatable<TKey>
|
|
where TVal : unmanaged
|
|
{
|
|
// See ReadDictionary; this is the same algorithm, adjusted for the NativeHashMap API
|
|
reader.ReadByteSafe(out byte full);
|
|
if (full != 0)
|
|
{
|
|
reader.ReadValueSafeInPlace(ref value);
|
|
return;
|
|
}
|
|
// Added
|
|
reader.ReadValueSafe(out int length);
|
|
for (var i = 0; i < length; ++i)
|
|
{
|
|
(TKey key, TVal val) = (default, default);
|
|
NetworkVariableSerialization<TKey>.Read(reader, ref key);
|
|
NetworkVariableSerialization<TVal>.Read(reader, ref val);
|
|
value.Add(key, val);
|
|
}
|
|
// Removed
|
|
reader.ReadValueSafe(out length);
|
|
for (var i = 0; i < length; ++i)
|
|
{
|
|
TKey key = default;
|
|
NetworkVariableSerialization<TKey>.Read(reader, ref key);
|
|
value.Remove(key);
|
|
}
|
|
// Changed
|
|
reader.ReadValueSafe(out length);
|
|
for (var i = 0; i < length; ++i)
|
|
{
|
|
(TKey key, TVal val) = (default, default);
|
|
NetworkVariableSerialization<TKey>.Read(reader, ref key);
|
|
NetworkVariableSerialization<TVal>.Read(reader, ref val);
|
|
value[key] = val;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|