The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com). ## [1.0.0-pre.10] - 2022-06-21 ### Added - Added a new `OnTransportFailure` callback to `NetworkManager`. This callback is invoked when the manager's `NetworkTransport` encounters an unrecoverable error. Transport failures also cause the `NetworkManager` to shut down. Currently, this is only used by `UnityTransport` to signal a timeout of its connection to the Unity Relay servers. (#1994) - Added `NetworkEvent.TransportFailure`, which can be used by implementations of `NetworkTransport` to signal to `NetworkManager` that an unrecoverable error was encountered. (#1994) - Added test to ensure a warning occurs when nesting NetworkObjects in a NetworkPrefab (#1969) - Added `NetworkManager.RemoveNetworkPrefab(...)` to remove a prefab from the prefabs list (#1950) ### Changed - Updated `UnityTransport` dependency on `com.unity.transport` to 1.1.0. (#2025) - (API Breaking) `ConnectionApprovalCallback` is no longer an `event` and will not allow more than 1 handler registered at a time. Also, `ConnectionApprovalCallback` is now a `Func<>` taking `ConnectionApprovalRequest` in and returning `ConnectionApprovalResponse` back out (#1972) ### Removed ### Fixed - Fixed issue where dynamically spawned `NetworkObject`s could throw an exception if the scene of origin handle was zero (0) and the `NetworkObject` was already spawned. (#2017) - Fixed issue where `NetworkObject.Observers` was not being cleared when despawned. (#2009) - Fixed `NetworkAnimator` could not run in the server authoritative mode. (#2003) - Fixed issue where late joining clients would get a soft synchronization error if any in-scene placed NetworkObjects were parented under another `NetworkObject`. (#1985) - Fixed issue where `NetworkBehaviourReference` would throw a type cast exception if using `NetworkBehaviourReference.TryGet` and the component type was not found. (#1984) - Fixed `NetworkSceneManager` was not sending scene event notifications for the currently active scene and any additively loaded scenes when loading a new scene in `LoadSceneMode.Single` mode. (#1975) - Fixed issue where one or more clients disconnecting during a scene event would cause `LoadEventCompleted` or `UnloadEventCompleted` to wait until the `NetworkConfig.LoadSceneTimeOut` period before being triggered. (#1973) - Fixed issues when multiple `ConnectionApprovalCallback`s were registered (#1972) - Fixed a regression in serialization support: `FixedString`, `Vector2Int`, and `Vector3Int` types can now be used in NetworkVariables and RPCs again without requiring a `ForceNetworkSerializeByMemcpy<>` wrapper. (#1961) - Fixed generic types that inherit from NetworkBehaviour causing crashes at compile time. (#1976) - Fixed endless dialog boxes when adding a `NetworkBehaviour` to a `NetworkManager` or vice-versa. (#1947) - Fixed `NetworkAnimator` issue where it was only synchronizing parameters if the layer or state changed or was transitioning between states. (#1946) - Fixed `NetworkAnimator` issue where when it did detect a parameter had changed it would send all parameters as opposed to only the parameters that changed. (#1946) - Fixed `NetworkAnimator` issue where it was not always disposing the `NativeArray` that is allocated when spawned. (#1946) - Fixed `NetworkAnimator` issue where it was not taking the animation speed or state speed multiplier into consideration. (#1946) - Fixed `NetworkAnimator` issue where it was not properly synchronizing late joining clients if they joined while `Animator` was transitioning between states. (#1946) - Fixed `NetworkAnimator` issue where the server was not relaying changes to non-owner clients when a client was the owner. (#1946) - Fixed issue where the `PacketLoss` metric for tools would return the packet loss over a connection lifetime instead of a single frame. (#2004)
151 lines
12 KiB
C#
151 lines
12 KiB
C#
using System;
|
|
using Unity.Collections;
|
|
using UnityEngine;
|
|
|
|
namespace Unity.Netcode
|
|
{
|
|
/// <summary>
|
|
/// Two-way serializer wrapping FastBufferReader or FastBufferWriter.
|
|
///
|
|
/// Implemented as a ref struct for two reasons:
|
|
/// 1. The BufferSerializer cannot outlive the FBR/FBW it wraps or using it will cause a crash
|
|
/// 2. The BufferSerializer must always be passed by reference and can't be copied
|
|
///
|
|
/// Ref structs help enforce both of those rules: they can't ref live the stack context in which they were
|
|
/// created, and they're always passed by reference no matter what.
|
|
///
|
|
/// BufferSerializer doesn't wrapp FastBufferReader or FastBufferWriter directly because it can't.
|
|
/// ref structs can't implement interfaces, and in order to be able to have two different implementations with
|
|
/// the same interface (which allows us to avoid an "if(IsReader)" on every call), the thing directly wrapping
|
|
/// the struct has to implement an interface. So IReaderWriter exists as the interface,
|
|
/// which is implemented by a normal struct, while the ref struct wraps the normal one to enforce the two above
|
|
/// requirements. (Allowing direct access to the IReaderWriter struct would allow dangerous
|
|
/// things to happen because the struct's lifetime could outlive the Reader/Writer's.)
|
|
/// </summary>
|
|
/// <typeparam name="TReaderWriter">The implementation struct</typeparam>
|
|
public ref struct BufferSerializer<TReaderWriter> where TReaderWriter : IReaderWriter
|
|
{
|
|
private TReaderWriter m_Implementation;
|
|
|
|
/// <summary>
|
|
/// Check if the contained implementation is a reader
|
|
/// </summary>
|
|
public bool IsReader => m_Implementation.IsReader;
|
|
|
|
/// <summary>
|
|
/// Check if the contained implementation is a writer
|
|
/// </summary>
|
|
public bool IsWriter => m_Implementation.IsWriter;
|
|
|
|
internal BufferSerializer(TReaderWriter implementation)
|
|
{
|
|
m_Implementation = implementation;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Retrieves the FastBufferReader instance. Only valid if IsReader = true, throws
|
|
/// InvalidOperationException otherwise.
|
|
/// </summary>
|
|
/// <returns>Reader instance</returns>
|
|
public FastBufferReader GetFastBufferReader()
|
|
{
|
|
return m_Implementation.GetFastBufferReader();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Retrieves the FastBufferWriter instance. Only valid if IsWriter = true, throws
|
|
/// InvalidOperationException otherwise.
|
|
/// </summary>
|
|
/// <returns>Writer instance</returns>
|
|
public FastBufferWriter GetFastBufferWriter()
|
|
{
|
|
return m_Implementation.GetFastBufferWriter();
|
|
}
|
|
|
|
public void SerializeValue(ref string s, bool oneByteChars = false) => m_Implementation.SerializeValue(ref s, oneByteChars);
|
|
public void SerializeValue(ref byte value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue<T>(ref T value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T> => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue<T>(ref T[] value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T> => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue<T>(ref T value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue<T>(ref T[] value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue<T>(ref T value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue<T>(ref T[] value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue<T>(ref T value, FastBufferWriter.ForNetworkSerializable unused = default) where T : INetworkSerializable, new() => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue<T>(ref T[] value, FastBufferWriter.ForNetworkSerializable unused = default) where T : INetworkSerializable, new() => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector2 value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector2[] value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector3 value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector3[] value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector2Int value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector2Int[] value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector3Int value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector3Int[] value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector4 value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Vector4[] value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Quaternion value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Quaternion[] value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Color value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Color[] value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Color32 value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Color32[] value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Ray value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Ray[] value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Ray2D value) => m_Implementation.SerializeValue(ref value);
|
|
public void SerializeValue(ref Ray2D[] value) => m_Implementation.SerializeValue(ref value);
|
|
|
|
// There are many FixedString types, but all of them share the interfaces INativeList<bool> and IUTF8Bytes.
|
|
// INativeList<bool> provides the Length property
|
|
// IUTF8Bytes provides GetUnsafePtr()
|
|
// Those two are necessary to serialize FixedStrings efficiently
|
|
// - otherwise we'd just be memcpying the whole thing even if
|
|
// most of it isn't used.
|
|
public void SerializeValue<T>(ref T value, FastBufferWriter.ForFixedStrings unused = default)
|
|
where T : unmanaged, INativeList<byte>, IUTF8Bytes => m_Implementation.SerializeValue(ref value);
|
|
|
|
public void SerializeNetworkSerializable<T>(ref T value) where T : INetworkSerializable, new() => m_Implementation.SerializeNetworkSerializable(ref value);
|
|
|
|
public bool PreCheck(int amount)
|
|
{
|
|
return m_Implementation.PreCheck(amount);
|
|
}
|
|
|
|
public void SerializeValuePreChecked(ref string s, bool oneByteChars = false) => m_Implementation.SerializeValuePreChecked(ref s, oneByteChars);
|
|
public void SerializeValuePreChecked(ref byte value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked<T>(ref T value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T> => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked<T>(ref T[] value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T> => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked<T>(ref T value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked<T>(ref T[] value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked<T>(ref T value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked<T>(ref T[] value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector2 value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector2[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector3 value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector3[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector2Int value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector2Int[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector3Int value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector3Int[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector4 value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Vector4[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Quaternion value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Quaternion[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Color value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Color[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Color32 value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Color32[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Ray value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Ray[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Ray2D value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
public void SerializeValuePreChecked(ref Ray2D[] value) => m_Implementation.SerializeValuePreChecked(ref value);
|
|
|
|
// There are many FixedString types, but all of them share the interfaces INativeList<bool> and IUTF8Bytes.
|
|
// INativeList<bool> provides the Length property
|
|
// IUTF8Bytes provides GetUnsafePtr()
|
|
// Those two are necessary to serialize FixedStrings efficiently
|
|
// - otherwise we'd just be memcpying the whole thing even if
|
|
// most of it isn't used.
|
|
public void SerializeValuePreChecked<T>(ref T value, FastBufferWriter.ForFixedStrings unused = default)
|
|
where T : unmanaged, INativeList<byte>, IUTF8Bytes => m_Implementation.SerializeValuePreChecked(ref value);
|
|
}
|
|
}
|