This repository has been archived on 2025-04-22. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
com.unity.netcode.gameobjects/Runtime/Components/NetworkRigidBodyBase.cs
Unity Technologies 48c6a6121c com.unity.netcode.gameobjects@2.0.0
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [2.0.0] - 2024-09-12

### Added

- Added tooltips for all of the `NetworkObject` component's properties. (#3052)
- Added message size validation to named and unnamed message sending functions for better error messages. (#3049)
- Added "Check for NetworkObject Component" property to the Multiplayer->Netcode for GameObjects project settings. When disabled, this will bypass the in-editor `NetworkObject` check on `NetworkBehaviour` components. (#3031)
- Added `NetworkTransform.SwitchTransformSpaceWhenParented` property that, when enabled, will handle the world to local, local to world, and local to local transform space transitions when interpolation is enabled. (#3013)
- Added `NetworkTransform.TickSyncChildren` that, when enabled, will tick synchronize nested and/or child `NetworkTransform` components to eliminate any potential visual jittering that could occur if the `NetworkTransform` instances get into a state where their state updates are landing on different network ticks. (#3013)
- Added `NetworkObject.AllowOwnerToParent` property to provide the ability to allow clients to parent owned objects when running in a client-server network topology. (#3013)
- Added `NetworkObject.SyncOwnerTransformWhenParented` property to provide a way to disable applying the server's transform information in the parenting message on the client owner instance which can be useful for owner authoritative motion models. (#3013)
- Added `NetcodeEditorBase` editor helper class to provide easier modification and extension of the SDK's components. (#3013)

### Fixed

- Fixed issue where `NetworkAnimator` would send updates to non-observer clients. (#3057)
- Fixed issue where an exception could occur when receiving a universal RPC for a `NetworkObject` that has been despawned. (#3052)
- Fixed issue where a NetworkObject hidden from a client that is then promoted to be session owner was not being synchronized with newly joining clients.(#3051)
- Fixed issue where clients could have a wrong time delta on `NetworkVariableBase` which could prevent from sending delta state updates. (#3045)
- Fixed issue where setting a prefab hash value during connection approval but not having a player prefab assigned could cause an exception when spawning a player. (#3042)
- Fixed issue where the `NetworkSpawnManager.HandleNetworkObjectShow` could throw an exception if one of the `NetworkObject` components to show was destroyed during the same frame. (#3030)
- Fixed issue where the `NetworkManagerHelper` was continuing to check for hierarchy changes when in play mode. (#3026)
- Fixed issue with newly/late joined clients and `NetworkTransform` synchronization of parented `NetworkObject` instances. (#3013)
- Fixed issue with smooth transitions between transform spaces when interpolation is enabled (requires `NetworkTransform.SwitchTransformSpaceWhenParented` to be enabled). (#3013)

### Changed

- Changed `NetworkTransformEditor` now uses `NetworkTransform` as the base type class to assure it doesn't display a foldout group when using the base `NetworkTransform` component class. (#3052)
- Changed `NetworkAnimator.Awake` is now a protected virtual method. (#3052)
- Changed  when invoking `NetworkManager.ConnectionManager.DisconnectClient` during a distributed authority session a more appropriate message is logged. (#3052)
- Changed `NetworkTransformEditor` so it now derives from `NetcodeEditorBase`. (#3013)
- Changed `NetworkRigidbodyBaseEditor` so it now derives from `NetcodeEditorBase`. (#3013)
- Changed `NetworkManagerEditor` so it now derives from `NetcodeEditorBase`. (#3013)
2024-09-12 00:00:00 +00:00

885 lines
36 KiB
C#

#if COM_UNITY_MODULES_PHYSICS || COM_UNITY_MODULES_PHYSICS2D
using System.Runtime.CompilerServices;
using UnityEngine;
namespace Unity.Netcode.Components
{
/// <summary>
/// NetworkRigidbodyBase is a unified <see cref="Rigidbody"/> and <see cref="Rigidbody2D"/> integration that helps to synchronize physics motion, collision, and interpolation
/// when used with a <see cref="NetworkTransform"/>.
/// </summary>
/// <remarks>
/// For a customizable netcode Rigidbody, create your own component from this class and use <see cref="Initialize(RigidbodyTypes, NetworkTransform, Rigidbody2D, Rigidbody)"/>
/// during instantiation (i.e. invoked from within the Awake method). You can re-initialize after having initialized but only when the <see cref="NetworkObject"/> is not spawned.
/// </remarks>
public abstract class NetworkRigidbodyBase : NetworkBehaviour
{
#if UNITY_EDITOR
[HideInInspector]
[SerializeField]
internal bool NetworkRigidbodyBaseExpanded;
#endif
/// <summary>
/// When enabled, the associated <see cref="NetworkTransform"/> will use the Rigidbody/Rigidbody2D to apply and synchronize changes in position, rotation, and
/// allows for the use of Rigidbody interpolation/extrapolation.
/// </summary>
/// <remarks>
/// If <see cref="NetworkTransform.Interpolate"/> is enabled, non-authoritative instances can only use Rigidbody interpolation. If a network prefab is set to
/// extrapolation and <see cref="NetworkTransform.Interpolate"/> is enabled, then non-authoritative instances will automatically be adjusted to use Rigidbody
/// interpolation while the authoritative instance will still use extrapolation.
/// </remarks>
[Tooltip("When enabled and a NetworkTransform component is attached, the NetworkTransform will use the rigid body for motion and detecting changes in state.")]
public bool UseRigidBodyForMotion;
/// <summary>
/// When enabled (default), automatically set the Kinematic state of the Rigidbody based on ownership.
/// When disabled, Kinematic state needs to be set by external script(s).
/// </summary>
public bool AutoUpdateKinematicState = true;
/// <summary>
/// Primarily applies to the <see cref="AutoUpdateKinematicState"/> property when disabled but you still want
/// the Rigidbody to be automatically set to Kinematic when despawned.
/// </summary>
public bool AutoSetKinematicOnDespawn = true;
// Determines if this is a Rigidbody or Rigidbody2D implementation
private bool m_IsRigidbody2D => RigidbodyType == RigidbodyTypes.Rigidbody2D;
// Used to cache the authority state of this Rigidbody during the last frame
private bool m_IsAuthority;
protected internal Rigidbody m_InternalRigidbody { get; private set; }
protected internal Rigidbody2D m_InternalRigidbody2D { get; private set; }
internal NetworkTransform NetworkTransform;
private float m_TickFrequency;
private float m_TickRate;
private enum InterpolationTypes
{
None,
Interpolate,
Extrapolate
}
private InterpolationTypes m_OriginalInterpolation;
/// <summary>
/// Used to define the type of Rigidbody implemented.
/// <see cref=""/>
/// </summary>
public enum RigidbodyTypes
{
Rigidbody,
Rigidbody2D,
}
public RigidbodyTypes RigidbodyType { get; private set; }
/// <summary>
/// Initializes the networked Rigidbody based on the <see cref="RigidbodyTypes"/>
/// passed in as a parameter.
/// </summary>
/// <remarks>
/// Cannot be initialized while the associated <see cref="NetworkObject"/> is spawned.
/// </remarks>
/// <param name="rigidbodyType">type of rigid body being initialized</param>
/// <param name="rigidbody2D">(optional) The <see cref="Rigidbody2D"/> to be used</param>
/// <param name="rigidbody">(optional) The <see cref="Rigidbody"/> to be used</param>
protected void Initialize(RigidbodyTypes rigidbodyType, NetworkTransform networkTransform = null, Rigidbody2D rigidbody2D = null, Rigidbody rigidbody = null)
{
// Don't initialize if already spawned
if (IsSpawned)
{
Debug.LogError($"[{name}] Attempting to initialize while spawned is not allowed.");
return;
}
RigidbodyType = rigidbodyType;
m_InternalRigidbody2D = rigidbody2D;
m_InternalRigidbody = rigidbody;
NetworkTransform = networkTransform;
if (m_IsRigidbody2D && m_InternalRigidbody2D == null)
{
m_InternalRigidbody2D = GetComponent<Rigidbody2D>();
}
else if (m_InternalRigidbody == null)
{
m_InternalRigidbody = GetComponent<Rigidbody>();
}
SetOriginalInterpolation();
if (NetworkTransform == null)
{
NetworkTransform = GetComponent<NetworkTransform>();
}
if (NetworkTransform != null)
{
NetworkTransform.RegisterRigidbody(this);
}
else
{
throw new System.Exception($"[Missing {nameof(NetworkTransform)}] No {nameof(NetworkTransform)} is assigned or can be found during initialization!");
}
if (AutoUpdateKinematicState)
{
SetIsKinematic(true);
}
}
internal Vector3 GetAdjustedPositionThreshold()
{
// Since the threshold is a measurement of unity world space units per tick, we will allow for the maximum threshold
// to be no greater than the threshold measured in unity world space units per second
var thresholdMax = NetworkTransform.PositionThreshold * m_TickRate;
// Get the velocity in unity world space units per tick
var perTickVelocity = GetLinearVelocity() * m_TickFrequency;
// Since a rigid body can have "micro-motion" when allowed to come to rest (based on friction etc), we will allow for
// no less than 1/10th the threshold value.
var minThreshold = NetworkTransform.PositionThreshold * 0.1f;
// Finally, we adjust the threshold based on the body's current velocity
perTickVelocity.x = Mathf.Clamp(Mathf.Abs(perTickVelocity.x), minThreshold, thresholdMax);
perTickVelocity.y = Mathf.Clamp(Mathf.Abs(perTickVelocity.y), minThreshold, thresholdMax);
// 2D Rigidbody only moves on x & y axis
if (!m_IsRigidbody2D)
{
perTickVelocity.z = Mathf.Clamp(Mathf.Abs(perTickVelocity.z), minThreshold, thresholdMax);
}
return perTickVelocity;
}
internal Vector3 GetAdjustedRotationThreshold()
{
// Since the rotation threshold is a measurement pf degrees per tick, we get the maximum threshold
// by calculating the threshold in degrees per second.
var thresholdMax = NetworkTransform.RotAngleThreshold * m_TickRate;
// Angular velocity is expressed in radians per second where as the rotation being checked is in degrees.
// Convert the angular velocity to degrees per second and then convert that to degrees per tick.
var rotationPerTick = (GetAngularVelocity() * Mathf.Rad2Deg) * m_TickFrequency;
var minThreshold = NetworkTransform.RotAngleThreshold * m_TickFrequency;
// 2D Rigidbody only rotates around Z axis
if (!m_IsRigidbody2D)
{
rotationPerTick.x = Mathf.Clamp(Mathf.Abs(rotationPerTick.x), minThreshold, thresholdMax);
rotationPerTick.y = Mathf.Clamp(Mathf.Abs(rotationPerTick.y), minThreshold, thresholdMax);
}
rotationPerTick.z = Mathf.Clamp(Mathf.Abs(rotationPerTick.z), minThreshold, thresholdMax);
return rotationPerTick;
}
/// <summary>
/// Sets the linear velocity of the Rigidbody.
/// </summary>
/// <remarks>
/// For <see cref="Rigidbody2D"/>, only the x and y components of the <see cref="Vector3"/> are applied.
/// </remarks>
public void SetLinearVelocity(Vector3 linearVelocity)
{
if (m_IsRigidbody2D)
{
#if COM_UNITY_MODULES_PHYSICS2D_LINEAR
m_InternalRigidbody2D.linearVelocity = linearVelocity;
#else
m_InternalRigidbody2D.velocity = linearVelocity;
#endif
}
else
{
m_InternalRigidbody.linearVelocity = linearVelocity;
}
}
/// <summary>
/// Gets the linear velocity of the Rigidbody.
/// </summary>
/// <remarks>
/// For <see cref="Rigidbody2D"/>, the <see cref="Vector3"/> velocity returned is only applied to the x and y components.
/// </remarks>
/// <returns><see cref="Vector3"/> as the linear velocity</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public Vector3 GetLinearVelocity()
{
if (m_IsRigidbody2D)
{
#if COM_UNITY_MODULES_PHYSICS2D_LINEAR
return m_InternalRigidbody2D.linearVelocity;
#else
return m_InternalRigidbody2D.velocity;
#endif
}
else
{
return m_InternalRigidbody.linearVelocity;
}
}
/// <summary>
/// Sets the angular velocity for the Rigidbody.
/// </summary>
/// <remarks>
/// For <see cref="Rigidbody2D"/>, the z component of <param name="angularVelocity"/> is only used to set the angular velocity.
/// A quick way to pass in a 2D angular velocity component is: <see cref="Vector3.forward"/> * angularVelocity (where angularVelocity is a float)
/// </remarks>
/// <param name="angularVelocity">the angular velocity to apply to the body</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void SetAngularVelocity(Vector3 angularVelocity)
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.angularVelocity = angularVelocity.z;
}
else
{
m_InternalRigidbody.angularVelocity = angularVelocity;
}
}
/// <summary>
/// Gets the angular velocity for the Rigidbody.
/// </summary>
/// <remarks>
/// For <see cref="Rigidbody2D"/>, the z component of the <see cref="Vector3"/> returned is the angular velocity of the object.
/// </remarks>
/// <returns>angular velocity as a <see cref="Vector3"/></returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public Vector3 GetAngularVelocity()
{
if (m_IsRigidbody2D)
{
return Vector3.forward * m_InternalRigidbody2D.angularVelocity;
}
else
{
return m_InternalRigidbody.angularVelocity;
}
}
/// <summary>
/// Gets the position of the Rigidbody
/// </summary>
/// <returns><see cref="Vector3"/></returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public Vector3 GetPosition()
{
if (m_IsRigidbody2D)
{
return m_InternalRigidbody2D.position;
}
else
{
return m_InternalRigidbody.position;
}
}
/// <summary>
/// Gets the rotation of the Rigidbody
/// </summary>
/// <returns><see cref="Quaternion"/></returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public Quaternion GetRotation()
{
if (m_IsRigidbody2D)
{
var quaternion = Quaternion.identity;
var angles = quaternion.eulerAngles;
angles.z = m_InternalRigidbody2D.rotation;
quaternion.eulerAngles = angles;
return quaternion;
}
else
{
return m_InternalRigidbody.rotation;
}
}
/// <summary>
/// Moves the rigid body
/// </summary>
/// <param name="position">The <see cref="Vector3"/> position to move towards</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void MovePosition(Vector3 position)
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.MovePosition(position);
}
else
{
m_InternalRigidbody.MovePosition(position);
}
}
/// <summary>
/// Directly applies a position (like teleporting)
/// </summary>
/// <param name="position"><see cref="Vector3"/> position to apply to the Rigidbody</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void SetPosition(Vector3 position)
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.position = position;
}
else
{
m_InternalRigidbody.position = position;
}
}
/// <summary>
/// Applies the rotation and position of the <see cref="GameObject"/>'s <see cref="Transform"/>
/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ApplyCurrentTransform()
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.position = transform.position;
m_InternalRigidbody2D.rotation = transform.eulerAngles.z;
}
else
{
m_InternalRigidbody.position = transform.position;
m_InternalRigidbody.rotation = transform.rotation;
}
}
// Used for Rigidbody only (see info on normalized below)
private Vector4 m_QuaternionCheck = Vector4.zero;
/// <summary>
/// Rotatates the Rigidbody towards a specified rotation
/// </summary>
/// <param name="rotation">The rotation expressed as a <see cref="Quaternion"/></param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void MoveRotation(Quaternion rotation)
{
if (m_IsRigidbody2D)
{
var quaternion = Quaternion.identity;
var angles = quaternion.eulerAngles;
angles.z = m_InternalRigidbody2D.rotation;
quaternion.eulerAngles = angles;
m_InternalRigidbody2D.MoveRotation(quaternion);
}
else
{
// Evidently we need to check to make sure the quaternion is a perfect
// magnitude of 1.0f when applying the rotation to a rigid body.
m_QuaternionCheck.x = rotation.x;
m_QuaternionCheck.y = rotation.y;
m_QuaternionCheck.z = rotation.z;
m_QuaternionCheck.w = rotation.w;
// If the magnitude is greater than 1.0f (even by a very small fractional value), then normalize the quaternion
if (m_QuaternionCheck.magnitude != 1.0f)
{
rotation.Normalize();
}
m_InternalRigidbody.MoveRotation(rotation);
}
}
/// <summary>
/// Applies a rotation to the Rigidbody
/// </summary>
/// <param name="rotation">The rotation to apply expressed as a <see cref="Quaternion"/></param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void SetRotation(Quaternion rotation)
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.rotation = rotation.eulerAngles.z;
}
else
{
m_InternalRigidbody.rotation = rotation;
}
}
/// <summary>
/// Sets the original interpolation of the Rigidbody while taking the Rigidbody type into consideration
/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void SetOriginalInterpolation()
{
if (m_IsRigidbody2D)
{
switch (m_InternalRigidbody2D.interpolation)
{
case RigidbodyInterpolation2D.None:
{
m_OriginalInterpolation = InterpolationTypes.None;
break;
}
case RigidbodyInterpolation2D.Interpolate:
{
m_OriginalInterpolation = InterpolationTypes.Interpolate;
break;
}
case RigidbodyInterpolation2D.Extrapolate:
{
m_OriginalInterpolation = InterpolationTypes.Extrapolate;
break;
}
}
}
else
{
switch (m_InternalRigidbody.interpolation)
{
case RigidbodyInterpolation.None:
{
m_OriginalInterpolation = InterpolationTypes.None;
break;
}
case RigidbodyInterpolation.Interpolate:
{
m_OriginalInterpolation = InterpolationTypes.Interpolate;
break;
}
case RigidbodyInterpolation.Extrapolate:
{
m_OriginalInterpolation = InterpolationTypes.Extrapolate;
break;
}
}
}
}
/// <summary>
/// Wakes the Rigidbody if it is sleeping
/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void WakeIfSleeping()
{
if (m_IsRigidbody2D)
{
if (m_InternalRigidbody2D.IsSleeping())
{
m_InternalRigidbody2D.WakeUp();
}
}
else
{
if (m_InternalRigidbody.IsSleeping())
{
m_InternalRigidbody.WakeUp();
}
}
}
/// <summary>
/// Puts the Rigidbody to sleep
/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void SleepRigidbody()
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.Sleep();
}
else
{
m_InternalRigidbody.Sleep();
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool IsKinematic()
{
if (m_IsRigidbody2D)
{
return m_InternalRigidbody2D.bodyType == RigidbodyType2D.Kinematic;
}
else
{
return m_InternalRigidbody.isKinematic;
}
}
/// <summary>
/// Sets the kinematic state of the Rigidbody and handles updating the Rigidbody's
/// interpolation setting based on the Kinematic state.
/// </summary>
/// <remarks>
/// When using the Rigidbody for <see cref="NetworkTransform"/> motion, this automatically
/// adjusts from extrapolation to interpolation if:
/// - The Rigidbody was originally set to extrapolation
/// - The NetworkTransform is set to interpolate
/// When the two above conditions are true:
/// - When switching from non-kinematic to kinematic this will automatically
/// switch the Rigidbody from extrapolation to interpolate.
/// - When switching from kinematic to non-kinematic this will automatically
/// switch the Rigidbody from interpolation back to extrapolation.
/// </remarks>
/// <param name="isKinematic"></param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void SetIsKinematic(bool isKinematic)
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.bodyType = isKinematic ? RigidbodyType2D.Kinematic : RigidbodyType2D.Dynamic;
}
else
{
m_InternalRigidbody.isKinematic = isKinematic;
}
// If we are not spawned, then exit early
if (!IsSpawned)
{
return;
}
if (UseRigidBodyForMotion)
{
// Only if the NetworkTransform is set to interpolate do we need to check for extrapolation
if (NetworkTransform.Interpolate && m_OriginalInterpolation == InterpolationTypes.Extrapolate)
{
if (IsKinematic())
{
// If not already set to interpolate then set the Rigidbody to interpolate
if (m_InternalRigidbody.interpolation == RigidbodyInterpolation.Extrapolate)
{
// Sleep until the next fixed update when switching from extrapolation to interpolation
SleepRigidbody();
SetInterpolation(InterpolationTypes.Interpolate);
}
}
else
{
// Switch it back to the original interpolation if non-kinematic (doesn't require sleep).
SetInterpolation(m_OriginalInterpolation);
}
}
}
else
{
SetInterpolation(m_IsAuthority ? m_OriginalInterpolation : (NetworkTransform.Interpolate ? InterpolationTypes.None : m_OriginalInterpolation));
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void SetInterpolation(InterpolationTypes interpolationType)
{
switch (interpolationType)
{
case InterpolationTypes.None:
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.interpolation = RigidbodyInterpolation2D.None;
}
else
{
m_InternalRigidbody.interpolation = RigidbodyInterpolation.None;
}
break;
}
case InterpolationTypes.Interpolate:
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.interpolation = RigidbodyInterpolation2D.Interpolate;
}
else
{
m_InternalRigidbody.interpolation = RigidbodyInterpolation.Interpolate;
}
break;
}
case InterpolationTypes.Extrapolate:
{
if (m_IsRigidbody2D)
{
m_InternalRigidbody2D.interpolation = RigidbodyInterpolation2D.Extrapolate;
}
else
{
m_InternalRigidbody.interpolation = RigidbodyInterpolation.Extrapolate;
}
break;
}
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ResetInterpolation()
{
SetInterpolation(m_OriginalInterpolation);
}
protected override void OnOwnershipChanged(ulong previous, ulong current)
{
UpdateOwnershipAuthority();
base.OnOwnershipChanged(previous, current);
}
/// <summary>
/// Sets the authority based on whether it is server or owner authoritative
/// </summary>
/// <remarks>
/// Distributed authority sessions will always be owner authoritative.
/// </remarks>
internal void UpdateOwnershipAuthority()
{
if (NetworkManager.DistributedAuthorityMode)
{
// When in distributed authority mode, always use HasAuthority
m_IsAuthority = HasAuthority;
}
else
{
if (NetworkTransform.IsServerAuthoritative())
{
m_IsAuthority = NetworkManager.IsServer;
}
else
{
m_IsAuthority = IsOwner;
}
}
if (AutoUpdateKinematicState)
{
SetIsKinematic(!m_IsAuthority);
}
}
/// <inheritdoc />
public override void OnNetworkSpawn()
{
m_TickFrequency = 1.0f / NetworkManager.NetworkConfig.TickRate;
m_TickRate = NetworkManager.NetworkConfig.TickRate;
UpdateOwnershipAuthority();
}
/// <inheritdoc />
public override void OnNetworkDespawn()
{
if (UseRigidBodyForMotion && HasAuthority)
{
DetachFromFixedJoint();
NetworkRigidbodyConnections.Clear();
}
// If we are automatically handling the kinematic state...
if (AutoUpdateKinematicState || AutoSetKinematicOnDespawn)
{
// Turn off physics for the rigid body until spawned, otherwise
// non-owners can run fixed updates before the first full
// NetworkTransform update and physics will be applied (i.e. gravity, etc)
SetIsKinematic(true);
}
SetInterpolation(m_OriginalInterpolation);
}
// TODO: Possibly provide a NetworkJoint that allows for more options than fixed.
// Rigidbodies do not have the concept of "local space", and as such using a fixed joint will hold the object
// in place relative to the parent so jitter/stutter does not occur.
// Alternately, users can affix the fixed joint to a child GameObject (without a rigid body) of the parent NetworkObject
// and then add a NetworkTransform to that in order to get the parented child NetworkObject to move around in "local space"
public FixedJoint FixedJoint { get; private set; }
public FixedJoint2D FixedJoint2D { get; private set; }
internal System.Collections.Generic.List<NetworkRigidbodyBase> NetworkRigidbodyConnections = new System.Collections.Generic.List<NetworkRigidbodyBase>();
internal NetworkRigidbodyBase ParentBody;
private bool m_FixedJoint2DUsingGravity;
private bool m_OriginalGravitySetting;
private float m_OriginalGravityScale;
/// <summary>
/// When using a custom <see cref="NetworkRigidbodyBase"/>, this virtual method is invoked when the
/// <see cref="FixedJoint"/> is created in the event any additional adjustments are needed.
/// </summary>
protected virtual void OnFixedJointCreated()
{
}
/// <summary>
/// When using a custom <see cref="NetworkRigidbodyBase"/>, this virtual method is invoked when the
/// <see cref="FixedJoint2D"/> is created in the event any additional adjustments are needed.
/// </summary>
protected virtual void OnFixedJoint2DCreated()
{
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void ApplyFixedJoint2D(NetworkRigidbodyBase bodyToConnect, Vector3 position, float connectedMassScale = 0.0f, float massScale = 1.0f, bool useGravity = false, bool zeroVelocity = true)
{
transform.position = position;
m_InternalRigidbody2D.position = position;
m_OriginalGravitySetting = bodyToConnect.m_InternalRigidbody.useGravity;
m_FixedJoint2DUsingGravity = useGravity;
if (!useGravity)
{
m_OriginalGravityScale = m_InternalRigidbody2D.gravityScale;
m_InternalRigidbody2D.gravityScale = 0.0f;
}
if (zeroVelocity)
{
#if COM_UNITY_MODULES_PHYSICS2D_LINEAR
m_InternalRigidbody2D.linearVelocity = Vector2.zero;
#else
m_InternalRigidbody2D.velocity = Vector2.zero;
#endif
m_InternalRigidbody2D.angularVelocity = 0.0f;
}
FixedJoint2D = gameObject.AddComponent<FixedJoint2D>();
FixedJoint2D.connectedBody = bodyToConnect.m_InternalRigidbody2D;
OnFixedJoint2DCreated();
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void ApplyFixedJoint(NetworkRigidbodyBase bodyToConnectTo, Vector3 position, float connectedMassScale = 0.0f, float massScale = 1.0f, bool useGravity = false, bool zeroVelocity = true)
{
transform.position = position;
m_InternalRigidbody.position = position;
if (zeroVelocity)
{
m_InternalRigidbody.linearVelocity = Vector3.zero;
m_InternalRigidbody.angularVelocity = Vector3.zero;
}
m_OriginalGravitySetting = m_InternalRigidbody.useGravity;
m_InternalRigidbody.useGravity = useGravity;
FixedJoint = gameObject.AddComponent<FixedJoint>();
FixedJoint.connectedBody = bodyToConnectTo.m_InternalRigidbody;
FixedJoint.connectedMassScale = connectedMassScale;
FixedJoint.massScale = massScale;
OnFixedJointCreated();
}
/// <summary>
/// Authority Only:
/// When invoked and not already attached to a fixed joint, this will connect two rigid bodies with <see cref="UseRigidBodyForMotion"/> enabled.
/// Invoke this method on the rigid body you wish to attach to another (i.e. weapon to player, sticky bomb to player/object, etc).
/// <seealso cref="FixedJoint"/>
/// <seealso cref="FixedJoint2D"/>
/// </summary>
/// <remarks>
/// Parenting relative:
/// - This instance can be viewed as the child.
/// - The <param name="objectToConnectTo"/> can be viewed as the parent.
/// <br/>
/// This is the recommended way, as opposed to parenting, to attached/detatch two rigid bodies to one another when <see cref="UseRigidBodyForMotion"/> is enabled.
/// For more details on using <see cref="UnityEngine.FixedJoint"/> and <see cref="UnityEngine.FixedJoint2D"/>.
/// <br/>
/// This provides a simple joint solution between two rigid bodies and serves as an example. You can add different joint types by creating a customized/derived
/// version of <see cref="NetworkRigidbodyBase"/>.
/// </remarks>
/// <param name="objectToConnectTo">The target object to attach to.</param>
/// <param name="positionOfConnection">The position of the connection (i.e. where you want the object to be affixed).</param>
/// <param name="connectedMassScale">The target object's mass scale relative to this object being attached.</param>
/// <param name="massScale">This object's mass scale relative to the target object's.</param>
/// <param name="useGravity">Determines if this object will have gravity applied to it along with the object you are connecting this one to (the default is to not use gravity for this object)</param>
/// <param name="zeroVelocity">When true (the default), both linear and angular velocities of this object are set to zero.</param>
/// <param name="teleportObject">When true (the default), this object will teleport itself to the position of connection.</param>
/// <returns>true (success) false (failed)</returns>
public bool AttachToFixedJoint(NetworkRigidbodyBase objectToConnectTo, Vector3 positionOfConnection, float connectedMassScale = 0.0f, float massScale = 1.0f, bool useGravity = false, bool zeroVelocity = true, bool teleportObject = true)
{
if (!UseRigidBodyForMotion)
{
Debug.LogError($"[{GetType().Name}] {name} does not have {nameof(UseRigidBodyForMotion)} set! Either enable {nameof(UseRigidBodyForMotion)} on this component or do not use a {nameof(FixedJoint)} when parenting under a {nameof(NetworkObject)}.");
return false;
}
if (IsKinematic())
{
Debug.LogError($"[{GetType().Name}] {name} is currently kinematic! You cannot use a {nameof(FixedJoint)} with Kinematic bodies!");
return false;
}
if (objectToConnectTo != null)
{
if (m_IsRigidbody2D)
{
ApplyFixedJoint2D(objectToConnectTo, positionOfConnection, connectedMassScale, massScale, useGravity, zeroVelocity);
}
else
{
ApplyFixedJoint(objectToConnectTo, positionOfConnection, connectedMassScale, massScale, useGravity, zeroVelocity);
}
ParentBody = objectToConnectTo;
ParentBody.NetworkRigidbodyConnections.Add(this);
if (teleportObject)
{
NetworkTransform.SetState(teleportDisabled: false);
}
return true;
}
return false;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void RemoveFromParentBody()
{
ParentBody.NetworkRigidbodyConnections.Remove(this);
ParentBody = null;
}
/// <summary>
/// Authority Only:
/// When invoked and already connected to an object via <see cref="FixedJoint"/> or <see cref="FixedJoint2D"/> (depending upon the type of rigid body),
/// this will detach from the fixed joint and destroy the fixed joint component.
/// </summary>
/// <remarks>
/// This is the recommended way, as opposed to parenting, to attached/detatch two rigid bodies to one another when <see cref="UseRigidBodyForMotion"/> is enabled.
/// </remarks>
public void DetachFromFixedJoint()
{
if (!HasAuthority)
{
Debug.LogError($"[{name}] Only authority can invoke {nameof(DetachFromFixedJoint)}!");
}
if (UseRigidBodyForMotion)
{
if (m_IsRigidbody2D)
{
if (FixedJoint2D != null)
{
if (!m_FixedJoint2DUsingGravity)
{
FixedJoint2D.connectedBody.gravityScale = m_OriginalGravityScale;
}
FixedJoint2D.connectedBody = null;
Destroy(FixedJoint2D);
FixedJoint2D = null;
ResetInterpolation();
RemoveFromParentBody();
}
}
else
{
if (FixedJoint != null)
{
FixedJoint.connectedBody = null;
m_InternalRigidbody.useGravity = m_OriginalGravitySetting;
Destroy(FixedJoint);
FixedJoint = null;
ResetInterpolation();
RemoveFromParentBody();
}
}
}
}
}
}
#endif // COM_UNITY_MODULES_PHYSICS