This repository has been archived on 2025-04-22. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
com.unity.netcode.gameobjects/Tests/Runtime/Transports/UnityTransportConnectionTests.cs
Unity Technologies b5abc3ff7c com.unity.netcode.gameobjects@1.4.0
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [1.4.0] - 2023-04-10

### Added

- Added a way to access the GlobalObjectIdHash via PrefabIdHash for use in the Connection Approval Callback. (#2437)
- Added `OnServerStarted` and `OnServerStopped` events that will trigger only on the server (or host player) to notify that the server just started or is no longer active (#2420)
- Added `OnClientStarted` and `OnClientStopped` events that will trigger only on the client (or host player) to notify that the client just started or is no longer active (#2420)
- Added `NetworkTransform.UseHalfFloatPrecision` property that, when enabled, will use half float values for position, rotation, and scale. This yields a 50% bandwidth savings a the cost of precision. (#2388)
- Added `NetworkTransform.UseQuaternionSynchronization` property that, when enabled, will synchronize the entire quaternion. (#2388)
- Added `NetworkTransform.UseQuaternionCompression` property that, when enabled, will use a smallest three implementation reducing a full quaternion synchronization update to the size of an unsigned integer. (#2388)
- Added `NetworkTransform.SlerpPosition` property that, when enabled along with interpolation being enabled, will interpolate using `Vector3.Slerp`. (#2388)
- Added `BufferedLinearInterpolatorVector3` that replaces the float version, is now used by `NetworkTransform`, and provides the ability to enable or disable `Slerp`. (#2388)
- Added `HalfVector3` used for scale when half float precision is enabled. (#2388)
- Added `HalfVector4` used for rotation when half float precision and quaternion synchronization is enabled. (#2388)
- Added `HalfVector3DeltaPosition` used for position when half float precision is enabled. This handles loss in position precision by updating only the delta position as opposed to the full position. (#2388)
- Added `NetworkTransform.GetSpaceRelativePosition` and `NetworkTransform.GetSpaceRelativeRotation` helper methods to return the proper values depending upon whether local or world space. (#2388)
- Added `NetworkTransform.OnAuthorityPushTransformState` virtual method that is invoked just prior to sending the `NetworkTransformState` to non-authoritative instances. This provides users with the ability to obtain more precise delta values for prediction related calculations. (#2388)
- Added `NetworkTransform.OnNetworkTransformStateUpdated` virtual method that is invoked just after the authoritative `NetworkTransformState` is applied. This provides users with the ability to obtain more precise delta values for prediction related calculations. (#2388)
- Added `NetworkTransform.OnInitialize`virtual method that is invoked after the `NetworkTransform` has been initialized or re-initialized when ownership changes. This provides for a way to make adjustments when `NetworkTransform` is initialized (i.e. resetting client prediction etc) (#2388)
- Added `NetworkObject.SynchronizeTransform` property (default is true) that provides users with another way to help with bandwidth optimizations where, when set to false, the `NetworkObject`'s associated transform will not be included when spawning and/or synchronizing late joining players. (#2388)
- Added `NetworkSceneManager.ActiveSceneSynchronizationEnabled` property, disabled by default, that enables client synchronization of server-side active scene changes. (#2383)
- Added `NetworkObject.ActiveSceneSynchronization`, disabled by default, that will automatically migrate a `NetworkObject` to a newly assigned active scene. (#2383)
- Added `NetworkObject.SceneMigrationSynchronization`, enabled by default, that will synchronize client(s) when a `NetworkObject` is migrated into a new scene on the server side via `SceneManager.MoveGameObjectToScene`. (#2383)

### Changed

- Made sure the `CheckObjectVisibility` delegate is checked and applied, upon `NetworkShow` attempt. Found while supporting (#2454), although this is not a fix for this (already fixed) issue. (#2463)
- Changed `NetworkTransform` authority handles delta checks on each new network tick and no longer consumes processing cycles checking for deltas for all frames in-between ticks. (#2388)
- Changed the `NetworkTransformState` structure is now public and now has public methods that provide access to key properties of the `NetworkTransformState` structure. (#2388)
- Changed `NetworkTransform` interpolation adjusts its interpolation "ticks ago" to be 2 ticks latent if it is owner authoritative and the instance is not the server or 1 tick latent if the instance is the server and/or is server authoritative. (#2388)
- Updated `NetworkSceneManager` to migrate dynamically spawned `NetworkObject`s with `DestroyWithScene` set to false into the active scene if their current scene is unloaded. (#2383)
- Updated the server to synchronize its local `NetworkSceneManager.ClientSynchronizationMode` during the initial client synchronization. (#2383)

### Fixed

- Fixed issue where during client synchronization the synchronizing client could receive a ObjectSceneChanged message before the client-side NetworkObject instance had been instantiated and spawned. (#2502)
- Fixed issue where `NetworkAnimator` was building client RPC parameters to exclude the host from sending itself messages but was not including it in the ClientRpc parameters. (#2492)
- Fixed issue where `NetworkAnimator` was not properly detecting and synchronizing cross fade initiated transitions. (#2481)
- Fixed issue where `NetworkAnimator` was not properly synchronizing animation state updates. (#2481)
- Fixed float NetworkVariables not being rendered properly in the inspector of NetworkObjects. (#2441)
- Fixed an issue where Named Message Handlers could remove themselves causing an exception when the metrics tried to access the name of the message.(#2426)
- Fixed registry of public `NetworkVariable`s in derived `NetworkBehaviour`s (#2423)
- Fixed issue where runtime association of `Animator` properties to `AnimationCurve`s would cause `NetworkAnimator` to attempt to update those changes. (#2416)
- Fixed issue where `NetworkAnimator` would not check if its associated `Animator` was valid during serialization and would spam exceptions in the editor console. (#2416)
- Fixed issue with a child's rotation rolling over when interpolation is enabled on a `NetworkTransform`. Now using half precision or full quaternion synchronization will always update all axis. (#2388)
- Fixed issue where `NetworkTransform` was not setting the teleport flag when the `NetworkTransform.InLocalSpace` value changed. This issue only impacted `NetworkTransform` when interpolation was enabled. (#2388)
- Fixed issue when the `NetworkSceneManager.ClientSynchronizationMode` is `LoadSceneMode.Additive` and the server changes the currently active scene prior to a client connecting then upon a client connecting and being synchronized the NetworkSceneManager would clear its internal ScenePlacedObjects list that could already be populated. (#2383)
- Fixed issue where a client would load duplicate scenes of already preloaded scenes during the initial client synchronization and `NetworkSceneManager.ClientSynchronizationMode` was set to `LoadSceneMode.Additive`. (#2383)
2023-04-10 00:00:00 +00:00

384 lines
14 KiB
C#

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using NUnit.Framework;
using Unity.Netcode.Transports.UTP;
using UnityEngine;
using UnityEngine.TestTools;
using static Unity.Netcode.RuntimeTests.UnityTransportTestHelpers;
namespace Unity.Netcode.RuntimeTests
{
public class UnityTransportConnectionTests
{
// For tests using multiple clients.
private const int k_NumClients = 5;
private UnityTransport m_Server;
private UnityTransport[] m_Clients = new UnityTransport[k_NumClients];
private List<TransportEvent> m_ServerEvents;
private List<TransportEvent>[] m_ClientsEvents = new List<TransportEvent>[k_NumClients];
[UnityTearDown]
public IEnumerator Cleanup()
{
if (m_Server)
{
m_Server.Shutdown();
UnityEngine.Object.DestroyImmediate(m_Server);
}
foreach (var transport in m_Clients)
{
if (transport)
{
transport.Shutdown();
UnityEngine.Object.DestroyImmediate(transport);
}
}
foreach (var transportEvents in m_ClientsEvents)
{
transportEvents?.Clear();
}
yield return null;
}
// Check connection with a single client.
[UnityTest]
public IEnumerator ConnectSingleClient()
{
InitializeTransport(out m_Server, out m_ServerEvents);
InitializeTransport(out m_Clients[0], out m_ClientsEvents[0]);
m_Server.StartServer();
m_Clients[0].StartClient();
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[0]);
// Check we've received Connect event on server too.
Assert.AreEqual(1, m_ServerEvents.Count);
Assert.AreEqual(NetworkEvent.Connect, m_ServerEvents[0].Type);
yield return null;
}
// Check connection with multiple clients.
[UnityTest]
public IEnumerator ConnectMultipleClients()
{
InitializeTransport(out m_Server, out m_ServerEvents);
m_Server.StartServer();
for (int i = 0; i < k_NumClients; i++)
{
InitializeTransport(out m_Clients[i], out m_ClientsEvents[i]);
m_Clients[i].StartClient();
}
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[k_NumClients - 1]);
// Check that every client received a Connect event.
Assert.True(m_ClientsEvents.All(evs => evs.Count == 1));
Assert.True(m_ClientsEvents.All(evs => evs[0].Type == NetworkEvent.Connect));
// Check we've received Connect events on server too.
Assert.AreEqual(k_NumClients, m_ServerEvents.Count);
Assert.True(m_ServerEvents.All(ev => ev.Type == NetworkEvent.Connect));
yield return null;
}
// Check server disconnection with a single client.
[UnityTest]
public IEnumerator ServerDisconnectSingleClient()
{
InitializeTransport(out m_Server, out m_ServerEvents);
InitializeTransport(out m_Clients[0], out m_ClientsEvents[0]);
m_Server.StartServer();
m_Clients[0].StartClient();
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[0]);
m_Server.DisconnectRemoteClient(m_ServerEvents[0].ClientID);
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ClientsEvents[0]);
yield return null;
}
// Check server disconnection with multiple clients.
[UnityTest]
public IEnumerator ServerDisconnectMultipleClients()
{
InitializeTransport(out m_Server, out m_ServerEvents);
m_Server.StartServer();
for (int i = 0; i < k_NumClients; i++)
{
InitializeTransport(out m_Clients[i], out m_ClientsEvents[i]);
m_Clients[i].StartClient();
}
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[k_NumClients - 1]);
// Disconnect a single client.
m_Server.DisconnectRemoteClient(m_ServerEvents[0].ClientID);
// Need to manually wait since we don't know which client will get the Disconnect.
yield return new WaitForSeconds(MaxNetworkEventWaitTime);
// Check that we received a Disconnect event on only one client.
Assert.AreEqual(1, m_ClientsEvents.Count(evs => evs.Count == 2 && evs[1].Type == NetworkEvent.Disconnect));
// Disconnect all the other clients.
for (int i = 1; i < k_NumClients; i++)
{
m_Server.DisconnectRemoteClient(m_ServerEvents[i].ClientID);
}
// Need to manually wait since we don't know which client got the Disconnect.
yield return new WaitForSeconds(MaxNetworkEventWaitTime);
// Check that all clients got a Disconnect event.
Assert.True(m_ClientsEvents.All(evs => evs.Count == 2));
Assert.True(m_ClientsEvents.All(evs => evs[1].Type == NetworkEvent.Disconnect));
yield return null;
}
// Check client disconnection from a single client.
[UnityTest]
public IEnumerator ClientDisconnectSingleClient()
{
InitializeTransport(out m_Server, out m_ServerEvents);
InitializeTransport(out m_Clients[0], out m_ClientsEvents[0]);
m_Server.StartServer();
m_Clients[0].StartClient();
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[0]);
m_Clients[0].DisconnectLocalClient();
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ServerEvents);
}
// Check client disconnection with multiple clients.
[UnityTest]
public IEnumerator ClientDisconnectMultipleClients()
{
InitializeTransport(out m_Server, out m_ServerEvents);
m_Server.StartServer();
for (int i = 0; i < k_NumClients; i++)
{
InitializeTransport(out m_Clients[i], out m_ClientsEvents[i]);
m_Clients[i].StartClient();
}
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[k_NumClients - 1]);
// Disconnect a single client.
m_Clients[0].DisconnectLocalClient();
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ServerEvents);
// Disconnect all the other clients.
for (int i = 1; i < k_NumClients; i++)
{
m_Clients[i].DisconnectLocalClient();
}
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ServerEvents);
// Check that we got the correct number of Disconnect events on the server.
Assert.AreEqual(k_NumClients * 2, m_ServerEvents.Count);
Assert.AreEqual(k_NumClients, m_ServerEvents.Count(e => e.Type == NetworkEvent.Disconnect));
yield return null;
}
// Check that server re-disconnects are no-ops.
[UnityTest]
public IEnumerator RepeatedServerDisconnectsNoop()
{
InitializeTransport(out m_Server, out m_ServerEvents);
InitializeTransport(out m_Clients[0], out m_ClientsEvents[0]);
m_Server.StartServer();
m_Clients[0].StartClient();
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[0]);
m_Server.DisconnectRemoteClient(m_ServerEvents[0].ClientID);
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ClientsEvents[0]);
var previousServerEventsCount = m_ServerEvents.Count;
var previousClientEventsCount = m_ClientsEvents[0].Count;
m_Server.DisconnectRemoteClient(m_ServerEvents[0].ClientID);
// Need to wait manually since no event should be generated.
yield return new WaitForSeconds(MaxNetworkEventWaitTime);
// Check we haven't received anything else on the client or server.
Assert.AreEqual(m_ServerEvents.Count, previousServerEventsCount);
Assert.AreEqual(m_ClientsEvents[0].Count, previousClientEventsCount);
yield return null;
}
// Check that client re-disconnects are no-ops.
[UnityTest]
public IEnumerator RepeatedClientDisconnectsNoop()
{
InitializeTransport(out m_Server, out m_ServerEvents);
InitializeTransport(out m_Clients[0], out m_ClientsEvents[0]);
m_Server.StartServer();
m_Clients[0].StartClient();
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[0]);
m_Clients[0].DisconnectLocalClient();
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ServerEvents);
var previousServerEventsCount = m_ServerEvents.Count;
var previousClientEventsCount = m_ClientsEvents[0].Count;
m_Clients[0].DisconnectLocalClient();
// Need to wait manually since no event should be generated.
yield return new WaitForSeconds(MaxNetworkEventWaitTime);
// Check we haven't received anything else on the client or server.
Assert.AreEqual(m_ServerEvents.Count, previousServerEventsCount);
Assert.AreEqual(m_ClientsEvents[0].Count, previousClientEventsCount);
yield return null;
}
// Check connection with different server/listen addresses.
[UnityTest]
public IEnumerator DifferentServerAndListenAddresses()
{
InitializeTransport(out m_Server, out m_ServerEvents);
InitializeTransport(out m_Clients[0], out m_ClientsEvents[0]);
m_Server.SetConnectionData("127.0.0.1", 10042, "0.0.0.0");
m_Clients[0].SetConnectionData("127.0.0.1", 10042);
m_Server.StartServer();
m_Clients[0].StartClient();
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[0]);
// Check we've received Connect event on server too.
Assert.AreEqual(1, m_ServerEvents.Count);
Assert.AreEqual(NetworkEvent.Connect, m_ServerEvents[0].Type);
yield return null;
}
// Check server disconnection with data in send queue.
[UnityTest]
public IEnumerator ServerDisconnectWithDataInQueue()
{
InitializeTransport(out m_Server, out m_ServerEvents);
InitializeTransport(out m_Clients[0], out m_ClientsEvents[0]);
m_Server.StartServer();
m_Clients[0].StartClient();
// Wait for the client to connect before we disconnect the client
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[0]);
var data = new ArraySegment<byte>(new byte[] { 42 });
m_Server.Send(m_ServerEvents[0].ClientID, data, NetworkDelivery.Unreliable);
m_Server.DisconnectRemoteClient(m_ServerEvents[0].ClientID);
yield return WaitForNetworkEvent(NetworkEvent.Data, m_ClientsEvents[0]);
if (m_ClientsEvents[0].Count >= 3)
{
Assert.AreEqual(NetworkEvent.Disconnect, m_ClientsEvents[0][2].Type);
}
else
{
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ClientsEvents[0]);
}
}
// Check client disconnection with data in send queue.
[UnityTest]
public IEnumerator ClientDisconnectWithDataInQueue()
{
InitializeTransport(out m_Server, out m_ServerEvents);
InitializeTransport(out m_Clients[0], out m_ClientsEvents[0]);
m_Server.StartServer();
m_Clients[0].StartClient();
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ServerEvents);
var data = new ArraySegment<byte>(new byte[] { 42 });
m_Clients[0].Send(m_Clients[0].ServerClientId, data, NetworkDelivery.Unreliable);
m_Clients[0].DisconnectLocalClient();
yield return WaitForNetworkEvent(NetworkEvent.Data, m_ServerEvents);
if (m_ServerEvents.Count >= 3)
{
Assert.AreEqual(NetworkEvent.Disconnect, m_ServerEvents[2].Type);
}
else
{
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ServerEvents);
}
}
// Check that a server can disconnect a client after another client has disconnected.
[UnityTest]
public IEnumerator ServerDisconnectAfterClientDisconnect()
{
InitializeTransport(out m_Server, out m_ServerEvents);
InitializeTransport(out m_Clients[0], out m_ClientsEvents[0]);
InitializeTransport(out m_Clients[1], out m_ClientsEvents[1]);
m_Server.StartServer();
m_Clients[0].StartClient();
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[0]);
m_Clients[1].StartClient();
yield return WaitForNetworkEvent(NetworkEvent.Connect, m_ClientsEvents[1]);
m_Clients[0].DisconnectLocalClient();
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ServerEvents);
// Pick the client ID of the still connected client.
var clientId = m_ServerEvents[0].ClientID;
if (m_ServerEvents[2].ClientID == clientId)
{
clientId = m_ServerEvents[1].ClientID;
}
m_Server.DisconnectRemoteClient(clientId);
yield return WaitForNetworkEvent(NetworkEvent.Disconnect, m_ClientsEvents[1]);
yield return null;
}
}
}