This repository has been archived on 2025-04-22. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
com.unity.netcode.gameobjects/Runtime/Configuration/NetworkConfig.cs
Unity Technologies 8060718e04 com.unity.netcode.gameobjects@1.3.1
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [1.3.1] - 2023-03-27

### Added

- Added detection and graceful handling of corrupt packets for additional safety. (#2419)

### Changed

- The UTP component UI has been updated to be more user-friendly for new users by adding a simple toggle to switch between local-only (127.0.0.1) and remote (0.0.0.0) binding modes, using the toggle "Allow Remote Connections" (#2408)
- Updated `UnityTransport` dependency on `com.unity.transport` to 1.3.3. (#2450)
- `NetworkShow()` of `NetworkObject`s are delayed until the end of the frame to ensure consistency of delta-driven variables like `NetworkList`.
- Dirty `NetworkObject` are reset at end-of-frame and not at serialization time.
- `NetworkHide()` of an object that was just `NetworkShow()`n produces a warning, as remote clients will _not_ get a spawn/despawn pair.
- Renamed the NetworkTransform.SetState parameter `shouldGhostsInterpolate` to `teleportDisabled` for better clarity of what that parameter does. (#2228)
- Network prefabs are now stored in a ScriptableObject that can be shared between NetworkManagers, and have been exposed for public access. By default, a Default Prefabs List is created that contains all NetworkObject prefabs in the project, and new NetworkManagers will default to using that unless that option is turned off in the Netcode for GameObjects settings. Existing NetworkManagers will maintain their existing lists, which can be migrated to the new format via a button in their inspector. (#2322)

### Fixed

- Fixed issue where changes to a layer's weight would not synchronize unless a state transition was occurring.(#2399)
- Fixed issue where `NetworkManager.LocalClientId` was returning the `NetworkTransport.ServerClientId` as opposed to the `NetworkManager.m_LocalClientId`. (#2398)
- Fixed issue where a dynamically spawned `NetworkObject` parented under an in-scene placed `NetworkObject` would have its `InScenePlaced` value changed to `true`. This would result in a soft synchronization error for late joining clients. (#2396)
- Fixed a UTP test that was failing when you install Unity Transport package 2.0.0 or newer. (#2347)
- Fixed issue where `NetcodeSettingsProvider` would throw an exception in Unity 2020.3.x versions. (#2345)
- Fixed server side issue where, depending upon component ordering, some NetworkBehaviour components might not have their OnNetworkDespawn method invoked if the client side disconnected. (#2323)
- Fixed a case where data corruption could occur when using UnityTransport when reaching a certain level of send throughput. (#2332)
- Fixed an issue in `UnityTransport` where an exception would be thrown if starting a Relay host/server on WebGL. This exception should only be thrown if using direct connections (where WebGL can't act as a host/server). (#2321)
- Fixed `NetworkAnimator` issue where it was not checking for `AnimatorStateTtansition.destinationStateMachine` and any possible sub-states defined within it. (#2309)
- Fixed `NetworkAnimator` issue where the host client was receiving the ClientRpc animation updates when the host was the owner.(#2309)
- Fixed `NetworkAnimator` issue with using pooled objects and when specific properties are cleaned during despawn and destroy.(#2309)
- Fixed issue where `NetworkAnimator` was checking for animation changes when the associated `NetworkObject` was not spawned.(#2309)
- Corrected an issue with the documentation for BufferSerializer (#2401)
2023-03-27 00:00:00 +00:00

341 lines
15 KiB
C#

using System;
using System.Collections.Generic;
using UnityEngine;
using System.Linq;
using Unity.Collections;
using UnityEngine.Serialization;
namespace Unity.Netcode
{
/// <summary>
/// The configuration object used to start server, client and hosts
/// </summary>
[Serializable]
public class NetworkConfig
{
/// <summary>
/// The protocol version. Different versions doesn't talk to each other.
/// </summary>
[Tooltip("Use this to make two builds incompatible with each other")]
public ushort ProtocolVersion = 0;
/// <summary>
/// The transport hosts the sever uses
/// </summary>
[Tooltip("The NetworkTransport to use")]
public NetworkTransport NetworkTransport = null;
/// <summary>
/// The default player prefab
/// </summary>
[Tooltip("When set, NetworkManager will automatically create and spawn the assigned player prefab. This can be overridden by adding it to the NetworkPrefabs list and selecting override.")]
public GameObject PlayerPrefab;
[SerializeField]
public NetworkPrefabs Prefabs = new NetworkPrefabs();
/// <summary>
/// The tickrate of network ticks. This value controls how often netcode runs user code and sends out data.
/// </summary>
[Tooltip("The tickrate. This value controls how often netcode runs user code and sends out data. The value is in 'ticks per seconds' which means a value of 50 will result in 50 ticks being executed per second or a fixed delta time of 0.02.")]
public uint TickRate = 30;
/// <summary>
/// The amount of seconds for the server to wait for the connection approval handshake to complete before the client is disconnected.
///
/// If the timeout is reached before approval is completed the client will be disconnected.
/// </summary>
/// <remarks>
/// The period begins after the <see cref="NetworkEvent.Connect"/> is received on the server.
/// The period ends once the server finishes processing a <see cref="ConnectionRequestMessage"/> from the client.
///
/// This setting is independent of any Transport-level timeouts that may be in effect. It covers the time between
/// the connection being established on the Transport layer, the client sending a
/// <see cref="ConnectionRequestMessage"/>, and the server processing that message through <see cref="ConnectionApproval"/>.
///
/// This setting is server-side only.
/// </remarks>
[Tooltip("The amount of seconds for the server to wait for the connection approval handshake to complete before the client is disconnected")]
public int ClientConnectionBufferTimeout = 10;
/// <summary>
/// Whether or not to use connection approval
/// </summary>
[Tooltip("Whether or not to force clients to be approved before they connect")]
public bool ConnectionApproval = false;
/// <summary>
/// The data to send during connection which can be used to decide on if a client should get accepted
/// </summary>
[Tooltip("The connection data sent along with connection requests")]
public byte[] ConnectionData = new byte[0];
/// <summary>
/// If your logic uses the NetworkTime, this should probably be turned off. If however it's needed to maximize accuracy, this is recommended to be turned on
/// </summary>
[Tooltip("Enable this to re-sync the NetworkTime after the initial sync")]
public bool EnableTimeResync = false;
/// <summary>
/// If time re-sync is turned on, this specifies the interval between syncs in seconds.
/// </summary>
[Tooltip("The amount of seconds between re-syncs of NetworkTime, if enabled")]
public int TimeResyncInterval = 30;
/// <summary>
/// Whether or not to ensure that NetworkVariables can be read even if a client accidentally writes where its not allowed to. This costs some CPU and bandwidth.
/// </summary>
[Tooltip("Ensures that NetworkVariables can be read even if a client accidental writes where its not allowed to. This will cost some CPU time and bandwidth")]
public bool EnsureNetworkVariableLengthSafety = false;
/// <summary>
/// Enables scene management. This will allow network scene switches and automatic scene difference corrections upon connect.
/// SoftSynced scene objects wont work with this disabled. That means that disabling SceneManagement also enables PrefabSync.
/// </summary>
[Tooltip("Enables scene management. This will allow network scene switches and automatic scene difference corrections upon connect.\n" +
"SoftSynced scene objects wont work with this disabled. That means that disabling SceneManagement also enables PrefabSync.")]
public bool EnableSceneManagement = true;
/// <summary>
/// Whether or not the netcode should check for differences in the prefabs at connection.
/// If you dynamically add prefabs at runtime, turn this OFF
/// </summary>
[Tooltip("Whether or not the netcode should check for differences in the prefab lists at connection")]
public bool ForceSamePrefabs = true;
/// <summary>
/// If true, NetworkIds will be reused after the NetworkIdRecycleDelay.
/// </summary>
[Tooltip("If true, NetworkIds will be reused after the NetworkIdRecycleDelay")]
public bool RecycleNetworkIds = true;
/// <summary>
/// The amount of seconds a NetworkId has to be unused in order for it to be reused.
/// </summary>
[Tooltip("The amount of seconds a NetworkId has to unused in order for it to be reused")]
public float NetworkIdRecycleDelay = 120f;
/// <summary>
/// Decides how many bytes to use for Rpc messaging. Leave this to 2 bytes unless you are facing hash collisions
/// </summary>
[Tooltip("The maximum amount of bytes to use for RPC messages.")]
public HashSize RpcHashSize = HashSize.VarIntFourBytes;
/// <summary>
/// The amount of seconds to wait for all clients to load or unload a requested scene
/// </summary>
[Tooltip("The amount of seconds to wait for all clients to load or unload a requested scene (only when EnableSceneManagement is enabled)")]
public int LoadSceneTimeOut = 120;
/// <summary>
/// The amount of time a message should be buffered if the asset or object needed to process it doesn't exist yet. If the asset is not added/object is not spawned within this time, it will be dropped.
/// </summary>
[Tooltip("The amount of time a message should be buffered if the asset or object needed to process it doesn't exist yet. If the asset is not added/object is not spawned within this time, it will be dropped")]
public float SpawnTimeout = 1f;
/// <summary>
/// Whether or not to enable network logs.
/// </summary>
public bool EnableNetworkLogs = true;
/// <summary>
/// The number of RTT samples that is kept as an average for calculations
/// </summary>
public const int RttAverageSamples = 5; // number of RTT to keep an average of (plus one)
/// <summary>
/// The number of slots used for RTT calculations. This is the maximum amount of in-flight messages
/// </summary>
public const int RttWindowSize = 64; // number of slots to use for RTT computations (max number of in-flight packets)
/// <summary>
/// Returns a base64 encoded version of the configuration
/// </summary>
/// <returns></returns>
public string ToBase64()
{
NetworkConfig config = this;
var writer = new FastBufferWriter(MessagingSystem.NON_FRAGMENTED_MESSAGE_MAX_SIZE, Allocator.Temp);
using (writer)
{
writer.WriteValueSafe(config.ProtocolVersion);
writer.WriteValueSafe(config.TickRate);
writer.WriteValueSafe(config.ClientConnectionBufferTimeout);
writer.WriteValueSafe(config.ConnectionApproval);
writer.WriteValueSafe(config.LoadSceneTimeOut);
writer.WriteValueSafe(config.EnableTimeResync);
writer.WriteValueSafe(config.EnsureNetworkVariableLengthSafety);
writer.WriteValueSafe(config.RpcHashSize);
writer.WriteValueSafe(ForceSamePrefabs);
writer.WriteValueSafe(EnableSceneManagement);
writer.WriteValueSafe(RecycleNetworkIds);
writer.WriteValueSafe(NetworkIdRecycleDelay);
writer.WriteValueSafe(EnableNetworkLogs);
// Allocates
return Convert.ToBase64String(writer.ToArray());
}
}
/// <summary>
/// Sets the NetworkConfig data with that from a base64 encoded version
/// </summary>
/// <param name="base64">The base64 encoded version</param>
public void FromBase64(string base64)
{
NetworkConfig config = this;
byte[] binary = Convert.FromBase64String(base64);
using var reader = new FastBufferReader(binary, Allocator.Temp);
using (reader)
{
reader.ReadValueSafe(out config.ProtocolVersion);
reader.ReadValueSafe(out config.TickRate);
reader.ReadValueSafe(out config.ClientConnectionBufferTimeout);
reader.ReadValueSafe(out config.ConnectionApproval);
reader.ReadValueSafe(out config.LoadSceneTimeOut);
reader.ReadValueSafe(out config.EnableTimeResync);
reader.ReadValueSafe(out config.EnsureNetworkVariableLengthSafety);
reader.ReadValueSafe(out config.RpcHashSize);
reader.ReadValueSafe(out config.ForceSamePrefabs);
reader.ReadValueSafe(out config.EnableSceneManagement);
reader.ReadValueSafe(out config.RecycleNetworkIds);
reader.ReadValueSafe(out config.NetworkIdRecycleDelay);
reader.ReadValueSafe(out config.EnableNetworkLogs);
}
}
private ulong? m_ConfigHash = null;
/// <summary>
/// Gets a SHA256 hash of parts of the NetworkConfig instance
/// </summary>
/// <param name="cache"></param>
/// <returns></returns>
public ulong GetConfig(bool cache = true)
{
if (m_ConfigHash != null && cache)
{
return m_ConfigHash.Value;
}
var writer = new FastBufferWriter(MessagingSystem.NON_FRAGMENTED_MESSAGE_MAX_SIZE, Allocator.Temp, int.MaxValue);
using (writer)
{
writer.WriteValueSafe(ProtocolVersion);
writer.WriteValueSafe(NetworkConstants.PROTOCOL_VERSION);
if (ForceSamePrefabs)
{
var sortedDictionary = Prefabs.NetworkPrefabOverrideLinks.OrderBy(x => x.Key);
foreach (var sortedEntry in sortedDictionary)
{
writer.WriteValueSafe(sortedEntry.Key);
}
}
writer.WriteValueSafe(TickRate);
writer.WriteValueSafe(ConnectionApproval);
writer.WriteValueSafe(ForceSamePrefabs);
writer.WriteValueSafe(EnableSceneManagement);
writer.WriteValueSafe(EnsureNetworkVariableLengthSafety);
writer.WriteValueSafe(RpcHashSize);
if (cache)
{
m_ConfigHash = XXHash.Hash64(writer.ToArray());
return m_ConfigHash.Value;
}
return XXHash.Hash64(writer.ToArray());
}
}
/// <summary>
/// Compares a SHA256 hash with the current NetworkConfig instances hash
/// </summary>
/// <param name="hash"></param>
/// <returns></returns>
public bool CompareConfig(ulong hash)
{
return hash == GetConfig();
}
internal void InitializePrefabs()
{
if (HasOldPrefabList())
{
MigrateOldNetworkPrefabsToNetworkPrefabsList();
}
Prefabs.Initialize();
}
#region Legacy Network Prefab List
[NonSerialized]
private bool m_DidWarnOldPrefabList = false;
private void WarnOldPrefabList()
{
if (!m_DidWarnOldPrefabList)
{
Debug.LogWarning("Using Legacy Network Prefab List. Consider Migrating.");
m_DidWarnOldPrefabList = true;
}
}
/// <summary>
/// Returns true if the old List&lt;NetworkPrefab&gt; serialized data is present.
/// </summary>
/// <remarks>
/// Internal use only to help migrate projects. <seealso cref="MigrateOldNetworkPrefabsToNetworkPrefabsList"/></remarks>
internal bool HasOldPrefabList()
{
return OldPrefabList?.Count > 0;
}
/// <summary>
/// Migrate the old format List&lt;NetworkPrefab&gt; prefab registration to the new NetworkPrefabsList ScriptableObject.
/// </summary>
/// <remarks>
/// OnAfterDeserialize cannot instantiate new objects (e.g. NetworkPrefabsList SO) since it executes in a thread, so we have to do it later.
/// Since NetworkConfig isn't a Unity.Object it doesn't get an Awake callback, so we have to do this in NetworkManager and expose this API.
/// </remarks>
internal NetworkPrefabsList MigrateOldNetworkPrefabsToNetworkPrefabsList()
{
if (OldPrefabList == null || OldPrefabList.Count == 0)
{
return null;
}
if (Prefabs == null)
{
throw new Exception("Prefabs field is null.");
}
Prefabs.NetworkPrefabsLists.Add(ScriptableObject.CreateInstance<NetworkPrefabsList>());
if (OldPrefabList?.Count > 0)
{
// Migrate legacy types/fields
foreach (var networkPrefab in OldPrefabList)
{
Prefabs.NetworkPrefabsLists[Prefabs.NetworkPrefabsLists.Count - 1].Add(networkPrefab);
}
}
OldPrefabList = null;
return Prefabs.NetworkPrefabsLists[Prefabs.NetworkPrefabsLists.Count - 1];
}
[FormerlySerializedAs("NetworkPrefabs")]
[SerializeField]
internal List<NetworkPrefab> OldPrefabList;
#endregion
}
}