The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com). ## [1.0.0-pre.7] - 2022-04-01 ### Added - Added editor only check prior to entering into play mode if the currently open and active scene is in the build list and if not displays a dialog box asking the user if they would like to automatically add it prior to entering into play mode. (#1828) - Added `UnityTransport` implementation and `com.unity.transport` package dependency (#1823) - Added `NetworkVariableWritePermission` to `NetworkVariableBase` and implemented `Owner` client writable netvars. (#1762) - `UnityTransport` settings can now be set programmatically. (#1845) - `FastBufferWriter` and Reader IsInitialized property. (#1859) ### Changed - Updated `UnityTransport` dependency on `com.unity.transport` to 1.0.0 (#1849) ### Removed - Removed `SnapshotSystem` (#1852) - Removed `com.unity.modules.animation`, `com.unity.modules.physics` and `com.unity.modules.physics2d` dependencies from the package (#1812) - Removed `com.unity.collections` dependency from the package (#1849) ### Fixed - Fixed in-scene placed NetworkObjects not being found/ignored after a client disconnects and then reconnects. (#1850) - Fixed issue where `UnityTransport` send queues were not flushed when calling `DisconnectLocalClient` or `DisconnectRemoteClient`. (#1847) - Fixed NetworkBehaviour dependency verification check for an existing NetworkObject not searching from root parent transform relative GameObject. (#1841) - Fixed issue where entries were not being removed from the NetworkSpawnManager.OwnershipToObjectsTable. (#1838) - Fixed ClientRpcs would always send to all connected clients by default as opposed to only sending to the NetworkObject's Observers list by default. (#1836) - Fixed clarity for NetworkSceneManager client side notification when it receives a scene hash value that does not exist in its local hash table. (#1828) - Fixed client throws a key not found exception when it times out using UNet or UTP. (#1821) - Fixed network variable updates are no longer limited to 32,768 bytes when NetworkConfig.EnsureNetworkVariableLengthSafety is enabled. The limits are now determined by what the transport can send in a message. (#1811) - Fixed in-scene NetworkObjects get destroyed if a client fails to connect and shuts down the NetworkManager. (#1809) - Fixed user never being notified in the editor that a NetworkBehaviour requires a NetworkObject to function properly. (#1808) - Fixed PlayerObjects and dynamically spawned NetworkObjects not being added to the NetworkClient's OwnedObjects (#1801) - Fixed issue where NetworkManager would continue starting even if the NetworkTransport selected failed. (#1780) - Fixed issue when spawning new player if an already existing player exists it does not remove IsPlayer from the previous player (#1779) - Fixed lack of notification that NetworkManager and NetworkObject cannot be added to the same GameObject with in-editor notifications (#1777) - Fixed parenting warning printing for false positives (#1855)
780 lines
32 KiB
C#
780 lines
32 KiB
C#
using System;
|
|
using System.Runtime.CompilerServices;
|
|
using Unity.Collections;
|
|
using Unity.Collections.LowLevel.Unsafe;
|
|
|
|
namespace Unity.Netcode
|
|
{
|
|
public struct FastBufferReader : IDisposable
|
|
{
|
|
internal struct ReaderHandle
|
|
{
|
|
internal unsafe byte* BufferPointer;
|
|
internal int Position;
|
|
internal int Length;
|
|
internal Allocator Allocator;
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
internal int AllowedReadMark;
|
|
internal bool InBitwiseContext;
|
|
#endif
|
|
}
|
|
|
|
internal unsafe ReaderHandle* Handle;
|
|
|
|
/// <summary>
|
|
/// Get the current read position
|
|
/// </summary>
|
|
public unsafe int Position
|
|
{
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
get => Handle->Position;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the total length of the buffer
|
|
/// </summary>
|
|
public unsafe int Length
|
|
{
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
get => Handle->Length;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets a value indicating whether the reader has been initialized and a handle allocated.
|
|
/// </summary>
|
|
public unsafe bool IsInitialized => Handle != null;
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
internal unsafe void CommitBitwiseReads(int amount)
|
|
{
|
|
Handle->Position += amount;
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
Handle->InBitwiseContext = false;
|
|
#endif
|
|
}
|
|
|
|
private static unsafe ReaderHandle* CreateHandle(byte* buffer, int length, int offset, Allocator allocator)
|
|
{
|
|
ReaderHandle* readerHandle = null;
|
|
if (allocator == Allocator.None)
|
|
{
|
|
readerHandle = (ReaderHandle*)UnsafeUtility.Malloc(sizeof(ReaderHandle) + length, UnsafeUtility.AlignOf<byte>(), Allocator.Temp);
|
|
readerHandle->BufferPointer = buffer;
|
|
readerHandle->Position = offset;
|
|
}
|
|
else
|
|
{
|
|
readerHandle = (ReaderHandle*)UnsafeUtility.Malloc(sizeof(ReaderHandle) + length, UnsafeUtility.AlignOf<byte>(), allocator);
|
|
UnsafeUtility.MemCpy(readerHandle + 1, buffer + offset, length);
|
|
readerHandle->BufferPointer = (byte*)(readerHandle + 1);
|
|
readerHandle->Position = 0;
|
|
}
|
|
|
|
readerHandle->Length = length;
|
|
readerHandle->Allocator = allocator;
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
readerHandle->AllowedReadMark = 0;
|
|
readerHandle->InBitwiseContext = false;
|
|
#endif
|
|
return readerHandle;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create a FastBufferReader from a NativeArray.
|
|
///
|
|
/// A new buffer will be created using the given allocator and the value will be copied in.
|
|
/// FastBufferReader will then own the data.
|
|
///
|
|
/// The exception to this is when the allocator passed in is Allocator.None. In this scenario,
|
|
/// ownership of the data remains with the caller and the reader will point at it directly.
|
|
/// When created with Allocator.None, FastBufferReader will allocate some internal data using
|
|
/// Allocator.Temp, so it should be treated as if it's a ref struct and not allowed to outlive
|
|
/// the context in which it was created (it should neither be returned from that function nor
|
|
/// stored anywhere in heap memory).
|
|
/// </summary>
|
|
/// <param name="buffer"></param>
|
|
/// <param name="allocator"></param>
|
|
/// <param name="length"></param>
|
|
/// <param name="offset"></param>
|
|
public unsafe FastBufferReader(NativeArray<byte> buffer, Allocator allocator, int length = -1, int offset = 0)
|
|
{
|
|
Handle = CreateHandle((byte*)buffer.GetUnsafePtr(), length == -1 ? buffer.Length : length, offset, allocator);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create a FastBufferReader from an ArraySegment.
|
|
///
|
|
/// A new buffer will be created using the given allocator and the value will be copied in.
|
|
/// FastBufferReader will then own the data.
|
|
///
|
|
/// Allocator.None is not supported for byte[]. If you need this functionality, use a fixed() block
|
|
/// and ensure the FastBufferReader isn't used outside that block.
|
|
/// </summary>
|
|
/// <param name="buffer">The buffer to copy from</param>
|
|
/// <param name="allocator">The allocator to use</param>
|
|
/// <param name="length">The number of bytes to copy (all if this is -1)</param>
|
|
/// <param name="offset">The offset of the buffer to start copying from</param>
|
|
public unsafe FastBufferReader(ArraySegment<byte> buffer, Allocator allocator, int length = -1, int offset = 0)
|
|
{
|
|
if (allocator == Allocator.None)
|
|
{
|
|
throw new NotSupportedException("Allocator.None cannot be used with managed source buffers.");
|
|
}
|
|
fixed (byte* data = buffer.Array)
|
|
{
|
|
Handle = CreateHandle(data, length == -1 ? buffer.Count : length, offset, allocator);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create a FastBufferReader from an existing byte array.
|
|
///
|
|
/// A new buffer will be created using the given allocator and the value will be copied in.
|
|
/// FastBufferReader will then own the data.
|
|
///
|
|
/// Allocator.None is not supported for byte[]. If you need this functionality, use a fixed() block
|
|
/// and ensure the FastBufferReader isn't used outside that block.
|
|
/// </summary>
|
|
/// <param name="buffer">The buffer to copy from</param>
|
|
/// <param name="allocator">The allocator to use</param>
|
|
/// <param name="length">The number of bytes to copy (all if this is -1)</param>
|
|
/// <param name="offset">The offset of the buffer to start copying from</param>
|
|
public unsafe FastBufferReader(byte[] buffer, Allocator allocator, int length = -1, int offset = 0)
|
|
{
|
|
if (allocator == Allocator.None)
|
|
{
|
|
throw new NotSupportedException("Allocator.None cannot be used with managed source buffers.");
|
|
}
|
|
fixed (byte* data = buffer)
|
|
{
|
|
Handle = CreateHandle(data, length == -1 ? buffer.Length : length, offset, allocator);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create a FastBufferReader from an existing byte buffer.
|
|
///
|
|
/// A new buffer will be created using the given allocator and the value will be copied in.
|
|
/// FastBufferReader will then own the data.
|
|
///
|
|
/// The exception to this is when the allocator passed in is Allocator.None. In this scenario,
|
|
/// ownership of the data remains with the caller and the reader will point at it directly.
|
|
/// When created with Allocator.None, FastBufferReader will allocate some internal data using
|
|
/// Allocator.Temp, so it should be treated as if it's a ref struct and not allowed to outlive
|
|
/// the context in which it was created (it should neither be returned from that function nor
|
|
/// stored anywhere in heap memory).
|
|
/// </summary>
|
|
/// <param name="buffer">The buffer to copy from</param>
|
|
/// <param name="allocator">The allocator to use</param>
|
|
/// <param name="length">The number of bytes to copy</param>
|
|
/// <param name="offset">The offset of the buffer to start copying from</param>
|
|
public unsafe FastBufferReader(byte* buffer, Allocator allocator, int length, int offset = 0)
|
|
{
|
|
Handle = CreateHandle(buffer, length, offset, allocator);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create a FastBufferReader from a FastBufferWriter.
|
|
///
|
|
/// A new buffer will be created using the given allocator and the value will be copied in.
|
|
/// FastBufferReader will then own the data.
|
|
///
|
|
/// The exception to this is when the allocator passed in is Allocator.None. In this scenario,
|
|
/// ownership of the data remains with the caller and the reader will point at it directly.
|
|
/// When created with Allocator.None, FastBufferReader will allocate some internal data using
|
|
/// Allocator.Temp, so it should be treated as if it's a ref struct and not allowed to outlive
|
|
/// the context in which it was created (it should neither be returned from that function nor
|
|
/// stored anywhere in heap memory).
|
|
/// </summary>
|
|
/// <param name="writer">The writer to copy from</param>
|
|
/// <param name="allocator">The allocator to use</param>
|
|
/// <param name="length">The number of bytes to copy (all if this is -1)</param>
|
|
/// <param name="offset">The offset of the buffer to start copying from</param>
|
|
public unsafe FastBufferReader(FastBufferWriter writer, Allocator allocator, int length = -1, int offset = 0)
|
|
{
|
|
Handle = CreateHandle(writer.GetUnsafePtr(), length == -1 ? writer.Length : length, offset, allocator);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Frees the allocated buffer
|
|
/// </summary>
|
|
public unsafe void Dispose()
|
|
{
|
|
UnsafeUtility.Free(Handle, Handle->Allocator);
|
|
Handle = null;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Move the read position in the stream
|
|
/// </summary>
|
|
/// <param name="where">Absolute value to move the position to, truncated to Length</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void Seek(int where)
|
|
{
|
|
Handle->Position = Math.Min(Length, where);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Mark that some bytes are going to be read via GetUnsafePtr().
|
|
/// </summary>
|
|
/// <param name="amount">Amount that will be read</param>
|
|
/// <exception cref="InvalidOperationException"></exception>
|
|
/// <exception cref="OverflowException"></exception>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
internal unsafe void MarkBytesRead(int amount)
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
if (Handle->Position + amount > Handle->AllowedReadMark)
|
|
{
|
|
throw new OverflowException("Attempted to read without first calling TryBeginRead()");
|
|
}
|
|
#endif
|
|
Handle->Position += amount;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Retrieve a BitReader to be able to perform bitwise operations on the buffer.
|
|
/// No bytewise operations can be performed on the buffer until bitReader.Dispose() has been called.
|
|
/// At the end of the operation, FastBufferReader will remain byte-aligned.
|
|
/// </summary>
|
|
/// <returns>A BitReader</returns>
|
|
public unsafe BitReader EnterBitwiseContext()
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
Handle->InBitwiseContext = true;
|
|
#endif
|
|
return new BitReader(this);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Allows faster serialization by batching bounds checking.
|
|
/// When you know you will be reading multiple fields back-to-back and you know the total size,
|
|
/// you can call TryBeginRead() once on the total size, and then follow it with calls to
|
|
/// ReadValue() instead of ReadValueSafe() for faster serialization.
|
|
///
|
|
/// Unsafe read operations will throw OverflowException in editor and development builds if you
|
|
/// go past the point you've marked using TryBeginRead(). In release builds, OverflowException will not be thrown
|
|
/// for performance reasons, since the point of using TryBeginRead is to avoid bounds checking in the following
|
|
/// operations in release builds.
|
|
/// </summary>
|
|
/// <param name="bytes">Amount of bytes to read</param>
|
|
/// <returns>True if the read is allowed, false otherwise</returns>
|
|
/// <exception cref="InvalidOperationException">If called while in a bitwise context</exception>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe bool TryBeginRead(int bytes)
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
#endif
|
|
if (Handle->Position + bytes > Handle->Length)
|
|
{
|
|
return false;
|
|
}
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
Handle->AllowedReadMark = Handle->Position + bytes;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Allows faster serialization by batching bounds checking.
|
|
/// When you know you will be reading multiple fields back-to-back and you know the total size,
|
|
/// you can call TryBeginRead() once on the total size, and then follow it with calls to
|
|
/// ReadValue() instead of ReadValueSafe() for faster serialization.
|
|
///
|
|
/// Unsafe read operations will throw OverflowException in editor and development builds if you
|
|
/// go past the point you've marked using TryBeginRead(). In release builds, OverflowException will not be thrown
|
|
/// for performance reasons, since the point of using TryBeginRead is to avoid bounds checking in the following
|
|
/// operations in release builds.
|
|
/// </summary>
|
|
/// <param name="value">The value you want to read</param>
|
|
/// <returns>True if the read is allowed, false otherwise</returns>
|
|
/// <exception cref="InvalidOperationException">If called while in a bitwise context</exception>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe bool TryBeginReadValue<T>(in T value) where T : unmanaged
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
#endif
|
|
int len = sizeof(T);
|
|
if (Handle->Position + len > Handle->Length)
|
|
{
|
|
return false;
|
|
}
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
Handle->AllowedReadMark = Handle->Position + len;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Internal version of TryBeginRead.
|
|
/// Differs from TryBeginRead only in that it won't ever move the AllowedReadMark backward.
|
|
/// </summary>
|
|
/// <param name="bytes"></param>
|
|
/// <returns></returns>
|
|
/// <exception cref="InvalidOperationException"></exception>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
internal unsafe bool TryBeginReadInternal(int bytes)
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
#endif
|
|
if (Handle->Position + bytes > Handle->Length)
|
|
{
|
|
return false;
|
|
}
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->Position + bytes > Handle->AllowedReadMark)
|
|
{
|
|
Handle->AllowedReadMark = Handle->Position + bytes;
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns an array representation of the underlying byte buffer.
|
|
/// !!Allocates a new array!!
|
|
/// </summary>
|
|
/// <returns></returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe byte[] ToArray()
|
|
{
|
|
byte[] ret = new byte[Length];
|
|
fixed (byte* b = ret)
|
|
{
|
|
UnsafeUtility.MemCpy(b, Handle->BufferPointer, Length);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets a direct pointer to the underlying buffer
|
|
/// </summary>
|
|
/// <returns></returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe byte* GetUnsafePtr()
|
|
{
|
|
return Handle->BufferPointer;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets a direct pointer to the underlying buffer at the current read position
|
|
/// </summary>
|
|
/// <returns></returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe byte* GetUnsafePtrAtCurrentPosition()
|
|
{
|
|
return Handle->BufferPointer + Handle->Position;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read an INetworkSerializable
|
|
/// </summary>
|
|
/// <param name="value">INetworkSerializable instance</param>
|
|
/// <typeparam name="T"></typeparam>
|
|
/// <exception cref="NotImplementedException"></exception>
|
|
public void ReadNetworkSerializable<T>(out T value) where T : INetworkSerializable, new()
|
|
{
|
|
value = new T();
|
|
var bufferSerializer = new BufferSerializer<BufferSerializerReader>(new BufferSerializerReader(this));
|
|
value.NetworkSerialize(bufferSerializer);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read an array of INetworkSerializables
|
|
/// </summary>
|
|
/// <param name="value">INetworkSerializable instance</param>
|
|
/// <typeparam name="T"></typeparam>
|
|
/// <exception cref="NotImplementedException"></exception>
|
|
public void ReadNetworkSerializable<T>(out T[] value) where T : INetworkSerializable, new()
|
|
{
|
|
ReadValueSafe(out int size);
|
|
value = new T[size];
|
|
for (var i = 0; i < size; ++i)
|
|
{
|
|
ReadNetworkSerializable(out value[i]);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reads a string
|
|
/// NOTE: ALLOCATES
|
|
/// </summary>
|
|
/// <param name="s">Stores the read string</param>
|
|
/// <param name="oneByteChars">Whether or not to use one byte per character. This will only allow ASCII</param>
|
|
public unsafe void ReadValue(out string s, bool oneByteChars = false)
|
|
{
|
|
ReadValue(out uint length);
|
|
s = "".PadRight((int)length);
|
|
int target = s.Length;
|
|
fixed (char* native = s)
|
|
{
|
|
if (oneByteChars)
|
|
{
|
|
for (int i = 0; i < target; ++i)
|
|
{
|
|
ReadByte(out byte b);
|
|
native[i] = (char)b;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ReadBytes((byte*)native, target * sizeof(char));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reads a string.
|
|
/// NOTE: ALLOCATES
|
|
///
|
|
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
|
|
/// for multiple reads at once by calling TryBeginRead.
|
|
/// </summary>
|
|
/// <param name="s">Stores the read string</param>
|
|
/// <param name="oneByteChars">Whether or not to use one byte per character. This will only allow ASCII</param>
|
|
public unsafe void ReadValueSafe(out string s, bool oneByteChars = false)
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
#endif
|
|
|
|
if (!TryBeginReadInternal(sizeof(uint)))
|
|
{
|
|
throw new OverflowException("Reading past the end of the buffer");
|
|
}
|
|
|
|
ReadValue(out uint length);
|
|
|
|
if (!TryBeginReadInternal((int)length * (oneByteChars ? 1 : sizeof(char))))
|
|
{
|
|
throw new OverflowException("Reading past the end of the buffer");
|
|
}
|
|
s = "".PadRight((int)length);
|
|
int target = s.Length;
|
|
fixed (char* native = s)
|
|
{
|
|
if (oneByteChars)
|
|
{
|
|
for (int i = 0; i < target; ++i)
|
|
{
|
|
ReadByte(out byte b);
|
|
native[i] = (char)b;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ReadBytes((byte*)native, target * sizeof(char));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Writes an unmanaged array
|
|
/// NOTE: ALLOCATES
|
|
/// </summary>
|
|
/// <param name="array">Stores the read array</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadValue<T>(out T[] array) where T : unmanaged
|
|
{
|
|
ReadValue(out int sizeInTs);
|
|
int sizeInBytes = sizeInTs * sizeof(T);
|
|
array = new T[sizeInTs];
|
|
fixed (T* native = array)
|
|
{
|
|
byte* bytes = (byte*)(native);
|
|
ReadBytes(bytes, sizeInBytes);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reads an unmanaged array
|
|
/// NOTE: ALLOCATES
|
|
///
|
|
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
|
|
/// for multiple reads at once by calling TryBeginRead.
|
|
/// </summary>
|
|
/// <param name="array">Stores the read array</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadValueSafe<T>(out T[] array) where T : unmanaged
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
#endif
|
|
|
|
if (!TryBeginReadInternal(sizeof(int)))
|
|
{
|
|
throw new OverflowException("Reading past the end of the buffer");
|
|
}
|
|
ReadValue(out int sizeInTs);
|
|
int sizeInBytes = sizeInTs * sizeof(T);
|
|
if (!TryBeginReadInternal(sizeInBytes))
|
|
{
|
|
throw new OverflowException("Reading past the end of the buffer");
|
|
}
|
|
array = new T[sizeInTs];
|
|
fixed (T* native = array)
|
|
{
|
|
byte* bytes = (byte*)(native);
|
|
ReadBytes(bytes, sizeInBytes);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read a partial value. The value is zero-initialized and then the specified number of bytes is read into it.
|
|
/// </summary>
|
|
/// <param name="value">Value to read</param>
|
|
/// <param name="bytesToRead">Number of bytes</param>
|
|
/// <param name="offsetBytes">Offset into the value to write the bytes</param>
|
|
/// <typeparam name="T"></typeparam>
|
|
/// <exception cref="InvalidOperationException"></exception>
|
|
/// <exception cref="OverflowException"></exception>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadPartialValue<T>(out T value, int bytesToRead, int offsetBytes = 0) where T : unmanaged
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
if (Handle->Position + bytesToRead > Handle->AllowedReadMark)
|
|
{
|
|
throw new OverflowException($"Attempted to read without first calling {nameof(TryBeginRead)}()");
|
|
}
|
|
#endif
|
|
|
|
var val = new T();
|
|
byte* ptr = ((byte*)&val) + offsetBytes;
|
|
byte* bufferPointer = Handle->BufferPointer + Handle->Position;
|
|
UnsafeUtility.MemCpy(ptr, bufferPointer, bytesToRead);
|
|
|
|
Handle->Position += bytesToRead;
|
|
value = val;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read a byte to the stream.
|
|
/// </summary>
|
|
/// <param name="value">Stores the read value</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadByte(out byte value)
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
if (Handle->Position + 1 > Handle->AllowedReadMark)
|
|
{
|
|
throw new OverflowException($"Attempted to read without first calling {nameof(TryBeginRead)}()");
|
|
}
|
|
#endif
|
|
value = Handle->BufferPointer[Handle->Position++];
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read a byte to the stream.
|
|
///
|
|
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
|
|
/// for multiple reads at once by calling TryBeginRead.
|
|
/// </summary>
|
|
/// <param name="value">Stores the read value</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadByteSafe(out byte value)
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
#endif
|
|
|
|
if (!TryBeginReadInternal(1))
|
|
{
|
|
throw new OverflowException("Reading past the end of the buffer");
|
|
}
|
|
value = Handle->BufferPointer[Handle->Position++];
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read multiple bytes to the stream
|
|
/// </summary>
|
|
/// <param name="value">Pointer to the destination buffer</param>
|
|
/// <param name="size">Number of bytes to read - MUST BE <= BUFFER SIZE</param>
|
|
/// <param name="offset">Offset of the byte buffer to store into</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadBytes(byte* value, int size, int offset = 0)
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
if (Handle->Position + size > Handle->AllowedReadMark)
|
|
{
|
|
throw new OverflowException($"Attempted to read without first calling {nameof(TryBeginRead)}()");
|
|
}
|
|
#endif
|
|
UnsafeUtility.MemCpy(value + offset, (Handle->BufferPointer + Handle->Position), size);
|
|
Handle->Position += size;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read multiple bytes to the stream
|
|
///
|
|
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
|
|
/// for multiple reads at once by calling TryBeginRead.
|
|
/// </summary>
|
|
/// <param name="value">Pointer to the destination buffer</param>
|
|
/// <param name="size">Number of bytes to read - MUST BE <= BUFFER SIZE</param>
|
|
/// <param name="offset">Offset of the byte buffer to store into</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadBytesSafe(byte* value, int size, int offset = 0)
|
|
{
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
#endif
|
|
|
|
if (!TryBeginReadInternal(size))
|
|
{
|
|
throw new OverflowException("Reading past the end of the buffer");
|
|
}
|
|
UnsafeUtility.MemCpy(value + offset, (Handle->BufferPointer + Handle->Position), size);
|
|
Handle->Position += size;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read multiple bytes from the stream
|
|
/// </summary>
|
|
/// <param name="value">Pointer to the destination buffer</param>
|
|
/// <param name="size">Number of bytes to read - MUST BE <= BUFFER SIZE</param>
|
|
/// <param name="offset">Offset of the byte buffer to store into</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadBytes(ref byte[] value, int size, int offset = 0)
|
|
{
|
|
fixed (byte* ptr = value)
|
|
{
|
|
ReadBytes(ptr, size, offset);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read multiple bytes from the stream
|
|
///
|
|
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
|
|
/// for multiple reads at once by calling TryBeginRead.
|
|
/// </summary>
|
|
/// <param name="value">Pointer to the destination buffer</param>
|
|
/// <param name="size">Number of bytes to read - MUST BE <= BUFFER SIZE</param>
|
|
/// <param name="offset">Offset of the byte buffer to store into</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadBytesSafe(ref byte[] value, int size, int offset = 0)
|
|
{
|
|
fixed (byte* ptr = value)
|
|
{
|
|
ReadBytesSafe(ptr, size, offset);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read a value of any unmanaged type to the buffer.
|
|
/// It will be copied from the buffer exactly as it existed in memory on the writing end.
|
|
/// </summary>
|
|
/// <param name="value">The read value</param>
|
|
/// <typeparam name="T">Any unmanaged type</typeparam>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadValue<T>(out T value) where T : unmanaged
|
|
{
|
|
int len = sizeof(T);
|
|
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
if (Handle->Position + len > Handle->AllowedReadMark)
|
|
{
|
|
throw new OverflowException($"Attempted to read without first calling {nameof(TryBeginRead)}()");
|
|
}
|
|
#endif
|
|
|
|
fixed (T* ptr = &value)
|
|
{
|
|
UnsafeUtility.MemCpy((byte*)ptr, Handle->BufferPointer + Handle->Position, len);
|
|
}
|
|
Handle->Position += len;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read a value of any unmanaged type to the buffer.
|
|
/// It will be copied from the buffer exactly as it existed in memory on the writing end.
|
|
///
|
|
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
|
|
/// for multiple reads at once by calling TryBeginRead.
|
|
/// </summary>
|
|
/// <param name="value">The read value</param>
|
|
/// <typeparam name="T">Any unmanaged type</typeparam>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public unsafe void ReadValueSafe<T>(out T value) where T : unmanaged
|
|
{
|
|
int len = sizeof(T);
|
|
|
|
#if DEVELOPMENT_BUILD || UNITY_EDITOR
|
|
if (Handle->InBitwiseContext)
|
|
{
|
|
throw new InvalidOperationException(
|
|
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
|
|
}
|
|
#endif
|
|
|
|
if (!TryBeginReadInternal(len))
|
|
{
|
|
throw new OverflowException("Reading past the end of the buffer");
|
|
}
|
|
|
|
|
|
fixed (T* ptr = &value)
|
|
{
|
|
UnsafeUtility.MemCpy((byte*)ptr, Handle->BufferPointer + Handle->Position, len);
|
|
}
|
|
Handle->Position += len;
|
|
}
|
|
}
|
|
}
|