This repository has been archived on 2025-04-22. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
com.unity.netcode.gameobjects/Runtime/NetworkVariable/NetworkVariable.cs
Unity Technologies 158f26b913 com.unity.netcode.gameobjects@1.9.1
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [1.9.1] - 2024-04-18

### Added
- Added AnticipatedNetworkVariable<T>, which adds support for client anticipation of NetworkVariable values, allowing for more responsive gameplay (#2820)
- Added AnticipatedNetworkTransform, which adds support for client anticipation of NetworkTransforms (#2820)
- Added NetworkVariableBase.ExceedsDirtinessThreshold to allow network variables to throttle updates by only sending updates when the difference between the current and previous values exceeds a threshold. (This is exposed in NetworkVariable<T> with the callback NetworkVariable<T>.CheckExceedsDirtinessThreshold) (#2820)
- Added NetworkVariableUpdateTraits, which add additional throttling support: MinSecondsBetweenUpdates will prevent the NetworkVariable from sending updates more often than the specified time period (even if it exceeds the dirtiness threshold), while MaxSecondsBetweenUpdates will force a dirty NetworkVariable to send an update after the specified time period even if it has not yet exceeded the dirtiness threshold. (#2820)
- Added virtual method NetworkVariableBase.OnInitialize() which can be used by NetworkVariable subclasses to add initialization code (#2820)
- Added virtual method NetworkVariableBase.Update(), which is called once per frame to support behaviors such as interpolation between an anticipated value and an authoritative one. (#2820)
- Added NetworkTime.TickWithPartial, which represents the current tick as a double that includes the fractional/partial tick value. (#2820)
- Added NetworkTickSystem.AnticipationTick, which can be helpful with implementation of client anticipation. This value represents the tick the current local client was at at the beginning of the most recent network round trip, which enables it to correlate server update ticks with the client tick that may have triggered them. (#2820)
- `NetworkVariable` now includes built-in support for `NativeHashSet`, `NativeHashMap`, `List`, `HashSet`, and `Dictionary` (#2813)
- `NetworkVariable` now includes delta compression for collection values (`NativeList`, `NativeArray`, `NativeHashSet`, `NativeHashMap`, `List`, `HashSet`, `Dictionary`, and `FixedString` types) to save bandwidth by only sending the values that changed. (Note: For `NativeList`, `NativeArray`, and `List`, this algorithm works differently than that used in `NetworkList`. This algorithm will use less bandwidth for "set" and "add" operations, but `NetworkList` is more bandwidth-efficient if you are performing frequent "insert" operations.) (#2813)
- `UserNetworkVariableSerialization` now has optional callbacks for `WriteDelta` and `ReadDelta`. If both are provided, they will be used for all serialization operations on NetworkVariables of that type except for the first one for each client. If either is missing, the existing `Write` and `Read` will always be used. (#2813)
- Network variables wrapping `INetworkSerializable` types can perform delta serialization by setting `UserNetworkVariableSerialization<T>.WriteDelta` and `UserNetworkVariableSerialization<T>.ReadDelta` for those types. The built-in `INetworkSerializable` serializer will continue to be used for all other serialization operations, but if those callbacks are set, it will call into them on all but the initial serialization to perform delta serialization. (This could be useful if you have a large struct where most values do not change regularly and you want to send only the fields that did change.) (#2813)

### Fixed

- Fixed issue where NetworkTransformEditor would throw and exception if you excluded the physics package. (#2871)
- Fixed issue where `NetworkTransform` could not properly synchronize its base position when using half float precision. (#2845)
- Fixed issue where the host was not invoking `OnClientDisconnectCallback` for its own local client when internally shutting down. (#2822)
- Fixed issue where NetworkTransform could potentially attempt to "unregister" a named message prior to it being registered. (#2807)
- Fixed issue where in-scene placed `NetworkObject`s with complex nested children `NetworkObject`s (more than one child in depth) would not synchronize properly if WorldPositionStays was set to true. (#2796)

### Changed

- Changed `NetworkObjectReference` and `NetworkBehaviourReference` to allow null references when constructing and serializing. (#2874)
- Changed `NetworkAnimator` no longer requires the `Animator` component to exist on the same `GameObject`. (#2872)
- Changed `NetworkTransform` to now use `NetworkTransformMessage` as opposed to named messages for NetworkTransformState updates. (#2810)
- Changed `CustomMessageManager` so it no longer attempts to register or "unregister" a null or empty string and will log an error if this condition occurs. (#2807)
2024-04-18 00:00:00 +00:00

237 lines
8.7 KiB
C#

using System;
using UnityEngine;
namespace Unity.Netcode
{
/// <summary>
/// A variable that can be synchronized over the network.
/// </summary>
/// <typeparam name="T">the unmanaged type for <see cref="NetworkVariable{T}"/> </typeparam>
[Serializable]
[GenerateSerializationForGenericParameter(0)]
public class NetworkVariable<T> : NetworkVariableBase
{
/// <summary>
/// Delegate type for value changed event
/// </summary>
/// <param name="previousValue">The value before the change</param>
/// <param name="newValue">The new value</param>
public delegate void OnValueChangedDelegate(T previousValue, T newValue);
/// <summary>
/// The callback to be invoked when the value gets changed
/// </summary>
public OnValueChangedDelegate OnValueChanged;
public delegate bool CheckExceedsDirtinessThresholdDelegate(in T previousValue, in T newValue);
public CheckExceedsDirtinessThresholdDelegate CheckExceedsDirtinessThreshold;
public override bool ExceedsDirtinessThreshold()
{
if (CheckExceedsDirtinessThreshold != null && m_HasPreviousValue)
{
return CheckExceedsDirtinessThreshold(m_PreviousValue, m_InternalValue);
}
return true;
}
public override void OnInitialize()
{
base.OnInitialize();
m_HasPreviousValue = true;
NetworkVariableSerialization<T>.Duplicate(m_InternalValue, ref m_PreviousValue);
}
/// <summary>
/// Constructor for <see cref="NetworkVariable{T}"/>
/// </summary>
/// <param name="value">initial value set that is of type T</param>
/// <param name="readPerm">the <see cref="NetworkVariableReadPermission"/> for this <see cref="NetworkVariable{T}"/></param>
/// <param name="writePerm">the <see cref="NetworkVariableWritePermission"/> for this <see cref="NetworkVariable{T}"/></param>
public NetworkVariable(T value = default,
NetworkVariableReadPermission readPerm = DefaultReadPerm,
NetworkVariableWritePermission writePerm = DefaultWritePerm)
: base(readPerm, writePerm)
{
m_InternalValue = value;
// Since we start with IsDirty = true, this doesn't need to be duplicated
// right away. It won't get read until after ResetDirty() is called, and
// the duplicate will be made there. Avoiding calling
// NetworkVariableSerialization<T>.Duplicate() is important because calling
// it in the constructor might not give users enough time to set the
// DuplicateValue callback if they're using UserNetworkVariableSerialization
m_PreviousValue = default;
}
/// <summary>
/// The internal value of the NetworkVariable
/// </summary>
[SerializeField]
private protected T m_InternalValue;
private protected T m_PreviousValue;
private bool m_HasPreviousValue;
private bool m_IsDisposed;
/// <summary>
/// The value of the NetworkVariable container
/// </summary>
public virtual T Value
{
get => m_InternalValue;
set
{
// Compare bitwise
if (NetworkVariableSerialization<T>.AreEqual(ref m_InternalValue, ref value))
{
return;
}
if (m_NetworkBehaviour && !CanClientWrite(m_NetworkBehaviour.NetworkManager.LocalClientId))
{
throw new InvalidOperationException("Client is not allowed to write to this NetworkVariable");
}
Set(value);
m_IsDisposed = false;
}
}
internal ref T RefValue()
{
return ref m_InternalValue;
}
public override void Dispose()
{
if (m_IsDisposed)
{
return;
}
m_IsDisposed = true;
if (m_InternalValue is IDisposable internalValueDisposable)
{
internalValueDisposable.Dispose();
}
m_InternalValue = default;
if (m_HasPreviousValue && m_PreviousValue is IDisposable previousValueDisposable)
{
m_HasPreviousValue = false;
previousValueDisposable.Dispose();
}
m_PreviousValue = default;
}
~NetworkVariable()
{
Dispose();
}
/// <summary>
/// Gets Whether or not the container is dirty
/// </summary>
/// <returns>Whether or not the container is dirty</returns>
public override bool IsDirty()
{
// For most cases we can use the dirty flag.
// This doesn't work for cases where we're wrapping more complex types
// like INetworkSerializable, NativeList, NativeArray, etc.
// Changes to the values in those types don't call the Value.set method,
// so we can't catch those changes and need to compare the current value
// against the previous one.
if (base.IsDirty())
{
return true;
}
// Cache the dirty value so we don't perform this again if we already know we're dirty
// Unfortunately we can't cache the NOT dirty state, because that might change
// in between to checks... but the DIRTY state won't change until ResetDirty()
// is called.
var dirty = !NetworkVariableSerialization<T>.AreEqual(ref m_PreviousValue, ref m_InternalValue);
SetDirty(dirty);
return dirty;
}
/// <summary>
/// Resets the dirty state and marks the variable as synced / clean
/// </summary>
public override void ResetDirty()
{
// Resetting the dirty value declares that the current value is not dirty
// Therefore, we set the m_PreviousValue field to a duplicate of the current
// field, so that our next dirty check is made against the current "not dirty"
// value.
if (IsDirty())
{
m_HasPreviousValue = true;
NetworkVariableSerialization<T>.Duplicate(m_InternalValue, ref m_PreviousValue);
}
base.ResetDirty();
}
/// <summary>
/// Sets the <see cref="Value"/>, marks the <see cref="NetworkVariable{T}"/> dirty, and invokes the <see cref="OnValueChanged"/> callback
/// if there are subscribers to that event.
/// </summary>
/// <param name="value">the new value of type `T` to be set/></param>
private protected void Set(T value)
{
SetDirty(true);
T previousValue = m_InternalValue;
m_InternalValue = value;
OnValueChanged?.Invoke(previousValue, m_InternalValue);
}
/// <summary>
/// Writes the variable to the writer
/// </summary>
/// <param name="writer">The stream to write the value to</param>
public override void WriteDelta(FastBufferWriter writer)
{
NetworkVariableSerialization<T>.WriteDelta(writer, ref m_InternalValue, ref m_PreviousValue);
}
/// <summary>
/// Reads value from the reader and applies it
/// </summary>
/// <param name="reader">The stream to read the value from</param>
/// <param name="keepDirtyDelta">Whether or not the container should keep the dirty delta, or mark the delta as consumed</param>
public override void ReadDelta(FastBufferReader reader, bool keepDirtyDelta)
{
// todo:
// keepDirtyDelta marks a variable received as dirty and causes the server to send the value to clients
// In a prefect world, whether a variable was A) modified locally or B) received and needs retransmit
// would be stored in different fields
T previousValue = m_InternalValue;
NetworkVariableSerialization<T>.ReadDelta(reader, ref m_InternalValue);
if (keepDirtyDelta)
{
SetDirty(true);
}
OnValueChanged?.Invoke(previousValue, m_InternalValue);
}
/// <inheritdoc />
public override void ReadField(FastBufferReader reader)
{
NetworkVariableSerialization<T>.Read(reader, ref m_InternalValue);
}
/// <inheritdoc />
public override void WriteField(FastBufferWriter writer)
{
NetworkVariableSerialization<T>.Write(writer, ref m_InternalValue);
}
}
}