This repository has been archived on 2025-04-22. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
com.unity.netcode.gameobjects/Components/QuaternionCompressor.cs
Unity Technologies b5abc3ff7c com.unity.netcode.gameobjects@1.4.0
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [1.4.0] - 2023-04-10

### Added

- Added a way to access the GlobalObjectIdHash via PrefabIdHash for use in the Connection Approval Callback. (#2437)
- Added `OnServerStarted` and `OnServerStopped` events that will trigger only on the server (or host player) to notify that the server just started or is no longer active (#2420)
- Added `OnClientStarted` and `OnClientStopped` events that will trigger only on the client (or host player) to notify that the client just started or is no longer active (#2420)
- Added `NetworkTransform.UseHalfFloatPrecision` property that, when enabled, will use half float values for position, rotation, and scale. This yields a 50% bandwidth savings a the cost of precision. (#2388)
- Added `NetworkTransform.UseQuaternionSynchronization` property that, when enabled, will synchronize the entire quaternion. (#2388)
- Added `NetworkTransform.UseQuaternionCompression` property that, when enabled, will use a smallest three implementation reducing a full quaternion synchronization update to the size of an unsigned integer. (#2388)
- Added `NetworkTransform.SlerpPosition` property that, when enabled along with interpolation being enabled, will interpolate using `Vector3.Slerp`. (#2388)
- Added `BufferedLinearInterpolatorVector3` that replaces the float version, is now used by `NetworkTransform`, and provides the ability to enable or disable `Slerp`. (#2388)
- Added `HalfVector3` used for scale when half float precision is enabled. (#2388)
- Added `HalfVector4` used for rotation when half float precision and quaternion synchronization is enabled. (#2388)
- Added `HalfVector3DeltaPosition` used for position when half float precision is enabled. This handles loss in position precision by updating only the delta position as opposed to the full position. (#2388)
- Added `NetworkTransform.GetSpaceRelativePosition` and `NetworkTransform.GetSpaceRelativeRotation` helper methods to return the proper values depending upon whether local or world space. (#2388)
- Added `NetworkTransform.OnAuthorityPushTransformState` virtual method that is invoked just prior to sending the `NetworkTransformState` to non-authoritative instances. This provides users with the ability to obtain more precise delta values for prediction related calculations. (#2388)
- Added `NetworkTransform.OnNetworkTransformStateUpdated` virtual method that is invoked just after the authoritative `NetworkTransformState` is applied. This provides users with the ability to obtain more precise delta values for prediction related calculations. (#2388)
- Added `NetworkTransform.OnInitialize`virtual method that is invoked after the `NetworkTransform` has been initialized or re-initialized when ownership changes. This provides for a way to make adjustments when `NetworkTransform` is initialized (i.e. resetting client prediction etc) (#2388)
- Added `NetworkObject.SynchronizeTransform` property (default is true) that provides users with another way to help with bandwidth optimizations where, when set to false, the `NetworkObject`'s associated transform will not be included when spawning and/or synchronizing late joining players. (#2388)
- Added `NetworkSceneManager.ActiveSceneSynchronizationEnabled` property, disabled by default, that enables client synchronization of server-side active scene changes. (#2383)
- Added `NetworkObject.ActiveSceneSynchronization`, disabled by default, that will automatically migrate a `NetworkObject` to a newly assigned active scene. (#2383)
- Added `NetworkObject.SceneMigrationSynchronization`, enabled by default, that will synchronize client(s) when a `NetworkObject` is migrated into a new scene on the server side via `SceneManager.MoveGameObjectToScene`. (#2383)

### Changed

- Made sure the `CheckObjectVisibility` delegate is checked and applied, upon `NetworkShow` attempt. Found while supporting (#2454), although this is not a fix for this (already fixed) issue. (#2463)
- Changed `NetworkTransform` authority handles delta checks on each new network tick and no longer consumes processing cycles checking for deltas for all frames in-between ticks. (#2388)
- Changed the `NetworkTransformState` structure is now public and now has public methods that provide access to key properties of the `NetworkTransformState` structure. (#2388)
- Changed `NetworkTransform` interpolation adjusts its interpolation "ticks ago" to be 2 ticks latent if it is owner authoritative and the instance is not the server or 1 tick latent if the instance is the server and/or is server authoritative. (#2388)
- Updated `NetworkSceneManager` to migrate dynamically spawned `NetworkObject`s with `DestroyWithScene` set to false into the active scene if their current scene is unloaded. (#2383)
- Updated the server to synchronize its local `NetworkSceneManager.ClientSynchronizationMode` during the initial client synchronization. (#2383)

### Fixed

- Fixed issue where during client synchronization the synchronizing client could receive a ObjectSceneChanged message before the client-side NetworkObject instance had been instantiated and spawned. (#2502)
- Fixed issue where `NetworkAnimator` was building client RPC parameters to exclude the host from sending itself messages but was not including it in the ClientRpc parameters. (#2492)
- Fixed issue where `NetworkAnimator` was not properly detecting and synchronizing cross fade initiated transitions. (#2481)
- Fixed issue where `NetworkAnimator` was not properly synchronizing animation state updates. (#2481)
- Fixed float NetworkVariables not being rendered properly in the inspector of NetworkObjects. (#2441)
- Fixed an issue where Named Message Handlers could remove themselves causing an exception when the metrics tried to access the name of the message.(#2426)
- Fixed registry of public `NetworkVariable`s in derived `NetworkBehaviour`s (#2423)
- Fixed issue where runtime association of `Animator` properties to `AnimationCurve`s would cause `NetworkAnimator` to attempt to update those changes. (#2416)
- Fixed issue where `NetworkAnimator` would not check if its associated `Animator` was valid during serialization and would spam exceptions in the editor console. (#2416)
- Fixed issue with a child's rotation rolling over when interpolation is enabled on a `NetworkTransform`. Now using half precision or full quaternion synchronization will always update all axis. (#2388)
- Fixed issue where `NetworkTransform` was not setting the teleport flag when the `NetworkTransform.InLocalSpace` value changed. This issue only impacted `NetworkTransform` when interpolation was enabled. (#2388)
- Fixed issue when the `NetworkSceneManager.ClientSynchronizationMode` is `LoadSceneMode.Additive` and the server changes the currently active scene prior to a client connecting then upon a client connecting and being synchronized the NetworkSceneManager would clear its internal ScenePlacedObjects list that could already be populated. (#2383)
- Fixed issue where a client would load duplicate scenes of already preloaded scenes during the initial client synchronization and `NetworkSceneManager.ClientSynchronizationMode` was set to `LoadSceneMode.Additive`. (#2383)
2023-04-10 00:00:00 +00:00

124 lines
7.2 KiB
C#

using System.Runtime.CompilerServices;
using UnityEngine;
namespace Unity.Netcode
{
/// <summary>
/// A Smallest Three Quaternion Compressor Implementation
/// </summary>
/// <remarks>
/// Explanation of why "The smallest three":
/// Since a normalized Quaternion's unit value is 1.0f:
/// x*x + y*y + z*z + w*w = M*M (where M is the magnitude of the vector)
/// If w was the largest value and the quaternion is normalized:
/// M = 1.0f (which M * M would still yield 1.0f)
/// w*w = M*M - (x*x + y*y + z*z) or Mathf.Sqrt(1.0f - (x*x + y*y + z*z))
/// w = Math.Sqrt(1.0f - (x*x + y*y + z*z))
/// Using the largest the number avoids potential loss of precision in the smallest three values.
/// </remarks>
public static class QuaternionCompressor
{
private const ushort k_PrecisionMask = (1 << 9) - 1;
// Square root of 2 over 2 (Mathf.Sqrt(2.0f) / 2.0f == 1.0f / Mathf.Sqrt(2.0f))
// This provides encoding the smallest three components into a (+/-) Mathf.Sqrt(2.0f) / 2.0f range
private const float k_SqrtTwoOverTwoEncoding = 0.70710678118654752440084436210485f;
// We can further improve the encoding compression by dividing k_SqrtTwoOverTwo into 1.0f and multiplying that
// by the precision mask (minor reduction of runtime calculations)
private const float k_CompressionEcodingMask = (1.0f / k_SqrtTwoOverTwoEncoding) * k_PrecisionMask;
// Used to shift the negative bit to the 10th bit position when compressing and encoding
private const ushort k_ShiftNegativeBit = 9;
// We can do the same for our decoding and decompression by dividing k_PrecisionMask into 1.0 and multiplying
// that by k_SqrtTwoOverTwo (minor reduction of runtime calculations)
private const float k_DcompressionDecodingMask = (1.0f / k_PrecisionMask) * k_SqrtTwoOverTwoEncoding;
// The sign bit position (10th bit) used when decompressing and decoding
private const ushort k_NegShortBit = 0x200;
// Negative bit set values
private const ushort k_True = 1;
private const ushort k_False = 0;
// Used to store the absolute value of the 4 quaternion elements
private static Quaternion s_QuatAbsValues = Quaternion.identity;
/// <summary>
/// Compresses a Quaternion into an unsigned integer
/// </summary>
/// <param name="quaternion">the <see cref="Quaternion"/> to be compressed</param>
/// <returns>the <see cref="Quaternion"/> compressed as an unsigned integer</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint CompressQuaternion(ref Quaternion quaternion)
{
// Store off the absolute value for each Quaternion element
s_QuatAbsValues[0] = Mathf.Abs(quaternion[0]);
s_QuatAbsValues[1] = Mathf.Abs(quaternion[1]);
s_QuatAbsValues[2] = Mathf.Abs(quaternion[2]);
s_QuatAbsValues[3] = Mathf.Abs(quaternion[3]);
// Get the largest element value of the quaternion to know what the remaining "Smallest Three" values are
var quatMax = Mathf.Max(s_QuatAbsValues[0], s_QuatAbsValues[1], s_QuatAbsValues[2], s_QuatAbsValues[3]);
// Find the index of the largest element so we can skip that element while compressing and decompressing
var indexToSkip = (ushort)(s_QuatAbsValues[0] == quatMax ? 0 : s_QuatAbsValues[1] == quatMax ? 1 : s_QuatAbsValues[2] == quatMax ? 2 : 3);
// Get the sign of the largest element which is all that is needed when calculating the sum of squares of a normalized quaternion.
var quatMaxSign = (quaternion[indexToSkip] < 0 ? k_True : k_False);
// Start with the index to skip which will be shifted to the highest two bits
var compressed = (uint)indexToSkip;
// Step 1: Start with the first element
var currentIndex = 0;
// Step 2: If we are on the index to skip preserve the current compressed value, otherwise proceed to step 3 and 4
// Step 3: Get the sign of the element we are processing. If it is the not the same as the largest value's sign bit then we set the bit
// Step 4: Get the compressed and encoded value by multiplying the absolute value of the current element by k_CompressionEcodingMask and round that result up
compressed = currentIndex != indexToSkip ? (compressed << 10) | (uint)((quaternion[currentIndex] < 0 ? k_True : k_False) != quatMaxSign ? k_True : k_False) << k_ShiftNegativeBit | (ushort)Mathf.Round(k_CompressionEcodingMask * s_QuatAbsValues[currentIndex]) : compressed;
currentIndex++;
// Repeat the last 3 steps for the remaining elements
compressed = currentIndex != indexToSkip ? (compressed << 10) | (uint)((quaternion[currentIndex] < 0 ? k_True : k_False) != quatMaxSign ? k_True : k_False) << k_ShiftNegativeBit | (ushort)Mathf.Round(k_CompressionEcodingMask * s_QuatAbsValues[currentIndex]) : compressed;
currentIndex++;
compressed = currentIndex != indexToSkip ? (compressed << 10) | (uint)((quaternion[currentIndex] < 0 ? k_True : k_False) != quatMaxSign ? k_True : k_False) << k_ShiftNegativeBit | (ushort)Mathf.Round(k_CompressionEcodingMask * s_QuatAbsValues[currentIndex]) : compressed;
currentIndex++;
compressed = currentIndex != indexToSkip ? (compressed << 10) | (uint)((quaternion[currentIndex] < 0 ? k_True : k_False) != quatMaxSign ? k_True : k_False) << k_ShiftNegativeBit | (ushort)Mathf.Round(k_CompressionEcodingMask * s_QuatAbsValues[currentIndex]) : compressed;
// Return the compress quaternion
return compressed;
}
/// <summary>
/// Decompress a compressed quaternion
/// </summary>
/// <param name="quaternion">quaternion to store the decompressed values within</param>
/// <param name="compressed">the compressed quaternion</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void DecompressQuaternion(ref Quaternion quaternion, uint compressed)
{
// Get the last two bits for the index to skip (0-3)
var indexToSkip = (int)(compressed >> 30);
// Reverse out the values while skipping over the largest value index
var sumOfSquaredMagnitudes = 0.0f;
for (int i = 3; i >= 0; --i)
{
if (i == indexToSkip)
{
continue;
}
// Check the negative bit and multiply that result with the decompressed and decoded value
quaternion[i] = ((compressed & k_NegShortBit) > 0 ? -1.0f : 1.0f) * ((compressed & k_PrecisionMask) * k_DcompressionDecodingMask);
sumOfSquaredMagnitudes += quaternion[i] * quaternion[i];
compressed = compressed >> 10;
}
// Since a normalized quaternion's magnitude is 1.0f, we subtract the sum of the squared smallest three from the unit value and take
// the square root of the difference to find the final largest value
quaternion[indexToSkip] = Mathf.Sqrt(1.0f - sumOfSquaredMagnitudes);
}
}
}