This repository has been archived on 2025-04-22. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
com.unity.netcode.gameobjects/Runtime/Serialization/FastBufferReader.cs
Unity Technologies 143a6cbd34 com.unity.netcode.gameobjects@2.0.0-exp.2
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [2.0.0-exp.2] - 2024-04-02

### Added
- Added updates to all internal messages to account for a distributed authority network session connection.  (#2863)
- Added `NetworkRigidbodyBase` that provides users with a more customizable network rigidbody, handles both `Rigidbody` and `Rigidbody2D`, and provides an option to make `NetworkTransform` use the rigid body for motion.  (#2863)
  - For a customized `NetworkRigidbodyBase` class:
    - `NetworkRigidbodyBase.AutoUpdateKinematicState` provides control on whether the kinematic setting will be automatically set or not when ownership changes.
    - `NetworkRigidbodyBase.AutoSetKinematicOnDespawn` provides control on whether isKinematic will automatically be set to true when the associated `NetworkObject` is despawned.
    - `NetworkRigidbodyBase.Initialize` is a protected method that, when invoked, will initialize the instance. This includes options to:
      - Set whether using a `RigidbodyTypes.Rigidbody` or `RigidbodyTypes.Rigidbody2D`.
      - Includes additional optional parameters to set the `NetworkTransform`, `Rigidbody`, and `Rigidbody2d` to use.
  - Provides additional public methods:
    - `NetworkRigidbodyBase.GetPosition` to return the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.GetRotation` to return the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.MovePosition` to move to the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.MoveRotation` to move to the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.SetPosition` to set the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.SetRotation` to set the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.ApplyCurrentTransform` to set the position and rotation of the `Rigidbody` or `Rigidbody2d` based on the associated `GameObject` transform (depending upon its initialized setting).
    - `NetworkRigidbodyBase.WakeIfSleeping` to wake up the rigid body if sleeping.
    - `NetworkRigidbodyBase.SleepRigidbody` to put the rigid body to sleep.
    - `NetworkRigidbodyBase.IsKinematic` to determine if the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) is currently kinematic.
    - `NetworkRigidbodyBase.SetIsKinematic` to set the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) current kinematic state.
    - `NetworkRigidbodyBase.ResetInterpolation` to reset the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) back to its original interpolation value when initialized.
  - Now includes a `MonoBehaviour.FixedUpdate` implementation that will update the assigned `NetworkTransform` when `NetworkRigidbodyBase.UseRigidBodyForMotion` is true. (#2863)
- Added `RigidbodyContactEventManager` that provides a more optimized way to process collision enter and collision stay events as opposed to the `Monobehaviour` approach. (#2863)
  - Can be used in client-server and distributed authority modes, but is particularly useful in distributed authority.
- Added rigid body motion updates to `NetworkTransform` which allows users to set interolation on rigid bodies. (#2863)
  - Extrapolation is only allowed on authoritative instances, but custom class derived from `NetworkRigidbodyBase` or `NetworkRigidbody` or `NetworkRigidbody2D` automatically switches non-authoritative instances to interpolation if set to extrapolation.
- Added distributed authority mode support to `NetworkAnimator`. (#2863)
- Added session mode selection to `NetworkManager` inspector view. (#2863)
- Added distributed authority permissions feature. (#2863)
- Added distributed authority mode specific `NetworkObject` permissions flags (Distributable, Transferable, and RequestRequired). (#2863)
- Added distributed authority mode specific `NetworkObject.SetOwnershipStatus` method that applies one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863)
- Added distributed authority mode specific `NetworkObject.RemoveOwnershipStatus` method that removes one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863)
- Added distributed authority mode specific `NetworkObject.HasOwnershipStatus` method that will return (true or false) whether one or more ownership flags is set. (#2863)
- Added distributed authority mode specific `NetworkObject.SetOwnershipLock` method that locks ownership of a `NetworkObject` to prevent ownership from changing until the current owner releases the lock. (#2863)
- Added distributed authority mode specific `NetworkObject.RequestOwnership` method that sends an ownership request to the current owner of a spawned `NetworkObject` instance. (#2863)
- Added distributed authority mode specific `NetworkObject.OnOwnershipRequested` callback handler that is invoked on the owner/authoritative side when a non-owner requests ownership. Depending upon the boolean returned value depends upon whether the request is approved or denied. (#2863)
- Added distributed authority mode specific `NetworkObject.OnOwnershipRequestResponse` callback handler that is invoked when a non-owner's request has been processed. This callback includes a `NetworkObjet.OwnershipRequestResponseStatus` response parameter that describes whether the request was approved or the reason why it was not approved. (#2863)
- Added distributed authority mode specific `NetworkObject.DeferDespawn` method that defers the despawning of `NetworkObject` instances on non-authoritative clients based on the tick offset parameter. (#2863)
- Added distributed authority mode specific `NetworkObject.OnDeferredDespawnComplete` callback handler that can be used to further control when deferring the despawning of a `NetworkObject` on non-authoritative instances. (#2863)
- Added `NetworkClient.SessionModeType` as one way to determine the current session mode of the network session a client is connected to. (#2863)
- Added distributed authority mode specific `NetworkClient.IsSessionOwner` property to determine if the current local client is the current session owner of a distributed authority session. (#2863)
- Added distributed authority mode specific client side spawning capabilities. When running in distributed authority mode, clients can instantiate and spawn `NetworkObject` instances (the local client is authomatically the owner of the spawned object). (#2863)
  - This is useful to better visually synchronize owner authoritative motion models and newly spawned `NetworkObject` instances (i.e. projectiles for example).
- Added distributed authority mode specific client side player spawning capabilities. Clients will automatically spawn their associated player object locally. (#2863)
- Added distributed authority mode specific `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property (default is true) to provide control over the automatic spawning of player prefabs on the local client side. (#2863)
- Added distributed authority mode specific `NetworkManager.OnFetchLocalPlayerPrefabToSpawn` callback that, when assigned, will allow the local client to provide the player prefab to be spawned for the local client. (#2863)
  - This is only invoked if the `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property is set to true.
- Added distributed authority mode specific `NetworkBehaviour.HasAuthority` property that determines if the local client has authority over the associated `NetworkObject` instance (typical use case is within a `NetworkBehaviour` script much like that of `IsServer` or `IsClient`). (#2863)
- Added distributed authority mode specific `NetworkBehaviour.IsSessionOwner` property that determines if the local client is the session owner (typical use case would be to determine if the local client can has scene management authority within a `NetworkBehaviour` script). (#2863)
- Added support for distributed authority mode scene management where the currently assigned session owner can start scene events (i.e. scene loading and scene unloading). (#2863)

### Fixed

- Fixed issue where the host was not invoking `OnClientDisconnectCallback` for its own local client when internally shutting down. (#2822)
- Fixed issue where NetworkTransform could potentially attempt to "unregister" a named message prior to it being registered. (#2807)
- Fixed issue where in-scene placed `NetworkObject`s with complex nested children `NetworkObject`s (more than one child in depth) would not synchronize properly if WorldPositionStays was set to true. (#2796)

### Changed
- Changed client side awareness of other clients is now the same as a server or host. (#2863)
- Changed `NetworkManager.ConnectedClients` can now be accessed by both server and clients. (#2863)
- Changed `NetworkManager.ConnectedClientsList` can now be accessed by both server and clients. (#2863)
- Changed `NetworkTransform` defaults to owner authoritative when connected to a distributed authority session. (#2863)
- Changed `NetworkVariable` defaults to owner write and everyone read permissions when connected to a distributed authority session (even if declared with server read or write permissions).  (#2863)
- Changed `NetworkObject` no longer implements the `MonoBehaviour.Update` method in order to determine whether a `NetworkObject` instance has been migrated to a different scene. Instead, only `NetworkObjects` with the `SceneMigrationSynchronization` property set will be updated internally during the `NetworkUpdateStage.PostLateUpdate` by `NetworkManager`. (#2863)
- Changed `NetworkManager` inspector view layout where properties are now organized by category. (#2863)
- Changed `NetworkTransform` to now use `NetworkTransformMessage` as opposed to named messages for NetworkTransformState updates. (#2810)
- Changed `CustomMessageManager` so it no longer attempts to register or "unregister" a null or empty string and will log an error if this condition occurs. (#2807)
2024-04-02 00:00:00 +00:00

1704 lines
80 KiB
C#

using System;
using System.Runtime.CompilerServices;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
using UnityEngine;
namespace Unity.Netcode
{
/// <summary>
/// Optimized class used for reading values from a byte stream
/// <seealso cref="FastBufferWriter"/>
/// <seealso cref="BytePacker"/>
/// <seealso cref="ByteUnpacker"/>
/// </summary>
public struct FastBufferReader : IDisposable
{
internal struct ReaderHandle
{
internal unsafe byte* BufferPointer;
internal int Position;
internal int Length;
internal Allocator Allocator;
#if DEVELOPMENT_BUILD || UNITY_EDITOR
internal int AllowedReadMark;
internal bool InBitwiseContext;
#endif
}
internal unsafe ReaderHandle* Handle;
/// <summary>
/// Get the current read position
/// </summary>
public unsafe int Position
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => Handle->Position;
}
/// <summary>
/// Get the total length of the buffer
/// </summary>
public unsafe int Length
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => Handle->Length;
}
/// <summary>
/// Gets a value indicating whether the reader has been initialized and a handle allocated.
/// </summary>
public unsafe bool IsInitialized => Handle != null;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void CommitBitwiseReads(int amount)
{
Handle->Position += amount;
#if DEVELOPMENT_BUILD || UNITY_EDITOR
Handle->InBitwiseContext = false;
#endif
}
private static unsafe ReaderHandle* CreateHandle(byte* buffer, int length, int offset, Allocator copyAllocator, Allocator internalAllocator)
{
ReaderHandle* readerHandle;
if (copyAllocator == Allocator.None)
{
readerHandle = (ReaderHandle*)UnsafeUtility.Malloc(sizeof(ReaderHandle), UnsafeUtility.AlignOf<byte>(), internalAllocator);
readerHandle->BufferPointer = buffer;
readerHandle->Position = offset;
}
else
{
readerHandle = (ReaderHandle*)UnsafeUtility.Malloc(sizeof(ReaderHandle) + length, UnsafeUtility.AlignOf<byte>(), copyAllocator);
UnsafeUtility.MemCpy(readerHandle + 1, buffer + offset, length);
readerHandle->BufferPointer = (byte*)(readerHandle + 1);
readerHandle->Position = 0;
}
readerHandle->Length = length;
// If the copyAllocator provided is Allocator.None, there is a chance that the internalAllocator was provided
// When we dispose, we are really only interested in disposing Allocator.Persistent and Allocator.TempJob
// as disposing Allocator.Temp and Allocator.None would do nothing. Therefore, make sure we dispose the readerHandle with the right Allocator label
readerHandle->Allocator = copyAllocator == Allocator.None ? internalAllocator : copyAllocator;
#if DEVELOPMENT_BUILD || UNITY_EDITOR
readerHandle->AllowedReadMark = 0;
readerHandle->InBitwiseContext = false;
#endif
return readerHandle;
}
/// <summary>
/// Create a FastBufferReader from a NativeArray.
///
/// A new buffer will be created using the given <param name="copyAllocator"></param> and the value will be copied in.
/// FastBufferReader will then own the data.
///
/// The exception to this is when the <param name="copyAllocator"></param> passed in is Allocator.None. In this scenario,
/// ownership of the data remains with the caller and the reader will point at it directly.
/// When created with Allocator.None, FastBufferReader will allocate some internal data using
/// Allocator.Temp so it should be treated as if it's a ref struct and not allowed to outlive
/// the context in which it was created (it should neither be returned from that function nor
/// stored anywhere in heap memory). This is true, unless the <param name="internalAllocator"></param> param is explicitly set
/// to i.e.: Allocator.Persistent in which case it would allow the internal data to Persist for longer, but the caller
/// should manually call Dispose() when it is no longer needed.
/// </summary>
/// <param name="buffer"></param>
/// <param name="copyAllocator">The allocator type used for internal data when copying an existing buffer if other than Allocator.None is specified, that memory will be owned by this FastBufferReader instance</param>
/// <param name="length"></param>
/// <param name="offset"></param>
/// <param name="internalAllocator">The allocator type used for internal data when this reader points directly at a buffer owned by someone else</param>
public unsafe FastBufferReader(NativeArray<byte> buffer, Allocator copyAllocator, int length = -1, int offset = 0, Allocator internalAllocator = Allocator.Temp)
{
Handle = CreateHandle((byte*)buffer.GetUnsafePtr(), length == -1 ? buffer.Length : length, offset, copyAllocator, internalAllocator);
}
/// <summary>
/// Create a FastBufferReader from an ArraySegment.
///
/// A new buffer will be created using the given allocator and the value will be copied in.
/// FastBufferReader will then own the data.
///
/// Allocator.None is not supported for byte[]. If you need this functionality, use a fixed() block
/// and ensure the FastBufferReader isn't used outside that block.
/// </summary>
/// <param name="buffer">The buffer to copy from</param>
/// <param name="copyAllocator">The allocator type used for internal data when copying an existing buffer if other than Allocator.None is specified, that memory will be owned by this FastBufferReader instance</param>
/// <param name="length">The number of bytes to copy (all if this is -1)</param>
/// <param name="offset">The offset of the buffer to start copying from</param>
public unsafe FastBufferReader(ArraySegment<byte> buffer, Allocator copyAllocator, int length = -1, int offset = 0)
{
if (copyAllocator == Allocator.None)
{
throw new NotSupportedException("Allocator.None cannot be used with managed source buffers.");
}
fixed (byte* data = buffer.Array)
{
Handle = CreateHandle(data, length == -1 ? buffer.Count : length, offset, copyAllocator, Allocator.Temp);
}
}
/// <summary>
/// Create a FastBufferReader from an existing byte array.
///
/// A new buffer will be created using the given allocator and the value will be copied in.
/// FastBufferReader will then own the data.
///
/// Allocator.None is not supported for byte[]. If you need this functionality, use a fixed() block
/// and ensure the FastBufferReader isn't used outside that block.
/// </summary>
/// <param name="buffer">The buffer to copy from</param>
/// <param name="copyAllocator">The allocator type used for internal data when copying an existing buffer if other than Allocator.None is specified, that memory will be owned by this FastBufferReader instance</param>
/// <param name="length">The number of bytes to copy (all if this is -1)</param>
/// <param name="offset">The offset of the buffer to start copying from</param>
public unsafe FastBufferReader(byte[] buffer, Allocator copyAllocator, int length = -1, int offset = 0)
{
if (copyAllocator == Allocator.None)
{
throw new NotSupportedException("Allocator.None cannot be used with managed source buffers.");
}
fixed (byte* data = buffer)
{
Handle = CreateHandle(data, length == -1 ? buffer.Length : length, offset, copyAllocator, Allocator.Temp);
}
}
/// <summary>
/// Create a FastBufferReader from an existing byte buffer.
///
/// A new buffer will be created using the given <param name="copyAllocator"></param> and the value will be copied in.
/// FastBufferReader will then own the data.
///
/// The exception to this is when the <param name="copyAllocator"></param> passed in is Allocator.None. In this scenario,
/// ownership of the data remains with the caller and the reader will point at it directly.
/// When created with Allocator.None, FastBufferReader will allocate some internal data using
/// Allocator.Temp, so it should be treated as if it's a ref struct and not allowed to outlive
/// the context in which it was created (it should neither be returned from that function nor
/// stored anywhere in heap memory). This is true, unless the <param name="internalAllocator"></param> param is explicitly set
/// to i.e.: Allocator.Persistent in which case it would allow the internal data to Persist for longer, but the caller
/// should manually call Dispose() when it is no longer needed.
/// </summary>
/// <param name="buffer">The buffer to copy from</param>
/// <param name="copyAllocator">The allocator type used for internal data when copying an existing buffer if other than Allocator.None is specified, that memory will be owned by this FastBufferReader instance</param>
/// <param name="length">The number of bytes to copy</param>
/// <param name="offset">The offset of the buffer to start copying from</param>
/// <param name="internalAllocator">The allocator type used for internal data when this reader points directly at a buffer owned by someone else</param>
public unsafe FastBufferReader(byte* buffer, Allocator copyAllocator, int length, int offset = 0, Allocator internalAllocator = Allocator.Temp)
{
Handle = CreateHandle(buffer, length, offset, copyAllocator, internalAllocator);
}
/// <summary>
/// Create a FastBufferReader from a FastBufferWriter.
///
/// A new buffer will be created using the given <param name="copyAllocator"></param> and the value will be copied in.
/// FastBufferReader will then own the data.
///
/// The exception to this is when the <param name="copyAllocator"></param> passed in is Allocator.None. In this scenario,
/// ownership of the data remains with the caller and the reader will point at it directly.
/// When created with Allocator.None, FastBufferReader will allocate some internal data using
/// Allocator.Temp, so it should be treated as if it's a ref struct and not allowed to outlive
/// the context in which it was created (it should neither be returned from that function nor
/// stored anywhere in heap memory). This is true, unless the <param name="internalAllocator"></param> param is explicitly set
/// to i.e.: Allocator.Persistent in which case it would allow the internal data to Persist for longer, but the caller
/// should manually call Dispose() when it is no longer needed.
/// </summary>
/// <param name="writer">The writer to copy from</param>
/// <param name="copyAllocator">The allocator type used for internal data when copying an existing buffer if other than Allocator.None is specified, that memory will be owned by this FastBufferReader instance</param>
/// <param name="length">The number of bytes to copy (all if this is -1)</param>
/// <param name="offset">The offset of the buffer to start copying from</param>
/// <param name="internalAllocator">The allocator type used for internal data when this reader points directly at a buffer owned by someone else</param>
public unsafe FastBufferReader(FastBufferWriter writer, Allocator copyAllocator, int length = -1, int offset = 0, Allocator internalAllocator = Allocator.Temp)
{
Handle = CreateHandle(writer.GetUnsafePtr(), length == -1 ? writer.Length : length, offset, copyAllocator, internalAllocator);
}
/// <summary>
/// Create a FastBufferReader from another existing FastBufferReader. This is typically used when you
/// want to change the copyAllocator that a reader is allocated to - for example, upgrading a Temp reader to
/// a Persistent one to be processed later.
///
/// A new buffer will be created using the given <param name="copyAllocator"></param> and the value will be copied in.
/// FastBufferReader will then own the data.
///
/// The exception to this is when the <param name="copyAllocator"></param> passed in is Allocator.None. In this scenario,
/// ownership of the data remains with the caller and the reader will point at it directly.
/// When created with Allocator.None, FastBufferReader will allocate some internal data using
/// Allocator.Temp, so it should be treated as if it's a ref struct and not allowed to outlive
/// the context in which it was created (it should neither be returned from that function nor
/// stored anywhere in heap memory).
/// </summary>
/// <param name="reader">The reader to copy from</param>
/// <param name="copyAllocator">The allocator type used for internal data when copying an existing buffer if other than Allocator.None is specified, that memory will be owned by this FastBufferReader instance</param>
/// <param name="length">The number of bytes to copy (all if this is -1)</param>
/// <param name="offset">The offset of the buffer to start copying from</param>
/// <param name="internalAllocator">The allocator type used for internal data when this reader points directly at a buffer owned by someone else</param>
public unsafe FastBufferReader(FastBufferReader reader, Allocator copyAllocator, int length = -1, int offset = 0, Allocator internalAllocator = Allocator.Temp)
{
Handle = CreateHandle(reader.GetUnsafePtr(), length == -1 ? reader.Length : length, offset, copyAllocator, internalAllocator);
}
/// <summary>
/// <see cref="IDisposable"/> implementation that frees the allocated buffer
/// </summary>
public unsafe void Dispose()
{
if (Handle == null)
{
return;
}
UnsafeUtility.Free(Handle, Handle->Allocator);
Handle = null;
}
/// <summary>
/// Move the read position in the stream
/// </summary>
/// <param name="where">Absolute value to move the position to, truncated to Length</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void Seek(int where)
{
Handle->Position = Math.Min(Length, where);
}
/// <summary>
/// Mark that some bytes are going to be read via GetUnsafePtr().
/// </summary>
/// <param name="amount">Amount that will be read</param>
/// <exception cref="InvalidOperationException"></exception>
/// <exception cref="OverflowException"></exception>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void MarkBytesRead(int amount)
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
if (Handle->Position + amount > Handle->AllowedReadMark)
{
throw new OverflowException("Attempted to read without first calling TryBeginRead()");
}
#endif
Handle->Position += amount;
}
/// <summary>
/// Retrieve a BitReader to be able to perform bitwise operations on the buffer.
/// No bytewise operations can be performed on the buffer until bitReader.Dispose() has been called.
/// At the end of the operation, FastBufferReader will remain byte-aligned.
/// </summary>
/// <returns>A BitReader</returns>
public unsafe BitReader EnterBitwiseContext()
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
Handle->InBitwiseContext = true;
#endif
return new BitReader(this);
}
/// <summary>
/// Allows faster serialization by batching bounds checking.
/// When you know you will be reading multiple fields back-to-back and you know the total size,
/// you can call TryBeginRead() once on the total size, and then follow it with calls to
/// ReadValue() instead of ReadValueSafe() for faster serialization.
///
/// Unsafe read operations will throw OverflowException in editor and development builds if you
/// go past the point you've marked using TryBeginRead(). In release builds, OverflowException will not be thrown
/// for performance reasons, since the point of using TryBeginRead is to avoid bounds checking in the following
/// operations in release builds.
/// </summary>
/// <param name="bytes">Amount of bytes to read</param>
/// <returns>True if the read is allowed, false otherwise</returns>
/// <exception cref="InvalidOperationException">If called while in a bitwise context</exception>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe bool TryBeginRead(int bytes)
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
#endif
if (Handle->Position + bytes > Handle->Length)
{
return false;
}
#if DEVELOPMENT_BUILD || UNITY_EDITOR
Handle->AllowedReadMark = Handle->Position + bytes;
#endif
return true;
}
/// <summary>
/// Allows faster serialization by batching bounds checking.
/// When you know you will be reading multiple fields back-to-back and you know the total size,
/// you can call TryBeginRead() once on the total size, and then follow it with calls to
/// ReadValue() instead of ReadValueSafe() for faster serialization.
///
/// Unsafe read operations will throw OverflowException in editor and development builds if you
/// go past the point you've marked using TryBeginRead(). In release builds, OverflowException will not be thrown
/// for performance reasons, since the point of using TryBeginRead is to avoid bounds checking in the following
/// operations in release builds.
/// </summary>
/// <typeparam name="T">the type `T` of the value you are trying to read</typeparam>
/// <param name="value">The value you want to read</param>
/// <returns>True if the read is allowed, false otherwise</returns>
/// <exception cref="InvalidOperationException">If called while in a bitwise context</exception>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe bool TryBeginReadValue<T>(in T value) where T : unmanaged
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
#endif
int len = sizeof(T);
if (Handle->Position + len > Handle->Length)
{
return false;
}
#if DEVELOPMENT_BUILD || UNITY_EDITOR
Handle->AllowedReadMark = Handle->Position + len;
#endif
return true;
}
/// <summary>
/// Internal version of TryBeginRead.
/// Differs from TryBeginRead only in that it won't ever move the AllowedReadMark backward.
/// </summary>
/// <param name="bytes"></param>
/// <returns>true upon success</returns>
/// <exception cref="InvalidOperationException"></exception>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe bool TryBeginReadInternal(int bytes)
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
#endif
if (Handle->Position + bytes > Handle->Length)
{
return false;
}
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->Position + bytes > Handle->AllowedReadMark)
{
Handle->AllowedReadMark = Handle->Position + bytes;
}
#endif
return true;
}
/// <summary>
/// Returns an array representation of the underlying byte buffer.
/// !!Allocates a new array!!
/// </summary>
/// <returns>byte array</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe byte[] ToArray()
{
byte[] ret = new byte[Length];
fixed (byte* b = ret)
{
UnsafeUtility.MemCpy(b, Handle->BufferPointer, Length);
}
return ret;
}
/// <summary>
/// Gets a direct pointer to the underlying buffer
/// </summary>
/// <returns><see cref="byte"/> pointer</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe byte* GetUnsafePtr()
{
return Handle->BufferPointer;
}
/// <summary>
/// Gets a direct pointer to the underlying buffer at the current read position
/// </summary>
/// <returns><see cref="byte"/> pointer</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe byte* GetUnsafePtrAtCurrentPosition()
{
return Handle->BufferPointer + Handle->Position;
}
/// <summary>
/// Read an INetworkSerializable
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="value">INetworkSerializable instance</param>
/// <exception cref="NotImplementedException"></exception>
public void ReadNetworkSerializable<T>(out T value) where T : INetworkSerializable, new()
{
value = new T();
var bufferSerializer = new BufferSerializer<BufferSerializerReader>(new BufferSerializerReader(this));
value.NetworkSerialize(bufferSerializer);
}
/// <summary>
/// Read an array of INetworkSerializables
/// </summary>
/// <param name="value">INetworkSerializable instance</param>
/// <typeparam name="T">the array to read the values of type `T` into</typeparam>
/// <exception cref="NotImplementedException"></exception>
public void ReadNetworkSerializable<T>(out T[] value) where T : INetworkSerializable, new()
{
ReadValueSafe(out int size);
value = new T[size];
for (var i = 0; i < size; ++i)
{
ReadNetworkSerializable(out value[i]);
}
}
/// <summary>
/// Read a NativeArray of INetworkSerializables
/// </summary>
/// <param name="value">INetworkSerializable instance</param>
/// <param name="allocator">The allocator to use to construct the resulting NativeArray</param>
/// <typeparam name="T">the array to read the values of type `T` into</typeparam>
/// <exception cref="NotImplementedException"></exception>
public void ReadNetworkSerializable<T>(out NativeArray<T> value, Allocator allocator) where T : unmanaged, INetworkSerializable
{
ReadValueSafe(out int size);
value = new NativeArray<T>(size, allocator);
for (var i = 0; i < size; ++i)
{
ReadNetworkSerializable(out T item);
value[i] = item;
}
}
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
/// <summary>
/// Read a NativeList of INetworkSerializables
/// </summary>
/// <param name="value">INetworkSerializable instance</param>
/// <typeparam name="T">the array to read the values of type `T` into</typeparam>
/// <exception cref="NotImplementedException"></exception>
public void ReadNetworkSerializableInPlace<T>(ref NativeList<T> value) where T : unmanaged, INetworkSerializable
{
ReadValueSafe(out int size);
value.Resize(size, NativeArrayOptions.UninitializedMemory);
for (var i = 0; i < size; ++i)
{
ReadNetworkSerializable(out value.ElementAt(i));
}
}
#endif
/// <summary>
/// Read an INetworkSerializable in-place, without constructing a new one
/// Note that this will NOT check for null before calling NetworkSerialize
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="value">INetworkSerializable instance</param>
/// <exception cref="NotImplementedException"></exception>
public void ReadNetworkSerializableInPlace<T>(ref T value) where T : INetworkSerializable
{
var bufferSerializer = new BufferSerializer<BufferSerializerReader>(new BufferSerializerReader(this));
value.NetworkSerialize(bufferSerializer);
}
/// <summary>
/// Reads a string
/// NOTE: ALLOCATES
/// </summary>
/// <param name="s">Stores the read string</param>
/// <param name="oneByteChars">Whether or not to use one byte per character. This will only allow ASCII</param>
public unsafe void ReadValue(out string s, bool oneByteChars = false)
{
ReadValue(out uint length);
s = "".PadRight((int)length);
int target = s.Length;
fixed (char* native = s)
{
if (oneByteChars)
{
for (int i = 0; i < target; ++i)
{
ReadByte(out byte b);
native[i] = (char)b;
}
}
else
{
ReadBytes((byte*)native, target * sizeof(char));
}
}
}
/// <summary>
/// Reads a string.
/// NOTE: ALLOCATES
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="s">Stores the read string</param>
/// <param name="oneByteChars">Whether or not to use one byte per character. This will only allow ASCII</param>
public unsafe void ReadValueSafe(out string s, bool oneByteChars = false)
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
#endif
if (!TryBeginReadInternal(sizeof(uint)))
{
throw new OverflowException("Reading past the end of the buffer");
}
ReadValue(out uint length);
if (!TryBeginReadInternal((int)length * (oneByteChars ? 1 : sizeof(char))))
{
throw new OverflowException("Reading past the end of the buffer");
}
s = "".PadRight((int)length);
int target = s.Length;
fixed (char* native = s)
{
if (oneByteChars)
{
for (int i = 0; i < target; ++i)
{
ReadByte(out byte b);
native[i] = (char)b;
}
}
else
{
ReadBytes((byte*)native, target * sizeof(char));
}
}
}
/// <summary>
/// Read a partial value. The value is zero-initialized and then the specified number of bytes is read into it.
/// </summary>
/// <param name="value">Value to read</param>
/// <param name="bytesToRead">Number of bytes</param>
/// <param name="offsetBytes">Offset into the value to write the bytes</param>
/// <typeparam name="T">the type value to read the value into</typeparam>
/// <exception cref="InvalidOperationException"></exception>
/// <exception cref="OverflowException"></exception>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadPartialValue<T>(out T value, int bytesToRead, int offsetBytes = 0) where T : unmanaged
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
if (Handle->Position + bytesToRead > Handle->AllowedReadMark)
{
throw new OverflowException($"Attempted to read without first calling {nameof(TryBeginRead)}()");
}
#endif
var val = new T();
byte* ptr = ((byte*)&val) + offsetBytes;
byte* bufferPointer = Handle->BufferPointer + Handle->Position;
UnsafeUtility.MemCpy(ptr, bufferPointer, bytesToRead);
Handle->Position += bytesToRead;
value = val;
}
/// <summary>
/// Read a byte to the stream.
/// </summary>
/// <param name="value">Stores the read value</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadByte(out byte value)
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
if (Handle->Position + 1 > Handle->AllowedReadMark)
{
throw new OverflowException($"Attempted to read without first calling {nameof(TryBeginRead)}()");
}
#endif
value = Handle->BufferPointer[Handle->Position++];
}
/// <summary>
/// Read a byte to the stream.
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">Stores the read value</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadByteSafe(out byte value)
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
#endif
if (!TryBeginReadInternal(1))
{
throw new OverflowException("Reading past the end of the buffer");
}
value = Handle->BufferPointer[Handle->Position++];
}
/// <summary>
/// Read multiple bytes to the stream
/// </summary>
/// <param name="value">Pointer to the destination buffer</param>
/// <param name="size">Number of bytes to read - MUST BE &lt;= BUFFER SIZE</param>
/// <param name="offset">Offset of the byte buffer to store into</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadBytes(byte* value, int size, int offset = 0)
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
if (Handle->Position + size > Handle->AllowedReadMark)
{
throw new OverflowException($"Attempted to read without first calling {nameof(TryBeginRead)}()");
}
#endif
UnsafeUtility.MemCpy(value + offset, (Handle->BufferPointer + Handle->Position), size);
Handle->Position += size;
}
/// <summary>
/// Read multiple bytes to the stream
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">Pointer to the destination buffer</param>
/// <param name="size">Number of bytes to read - MUST BE &lt;= BUFFER SIZE</param>
/// <param name="offset">Offset of the byte buffer to store into</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadBytesSafe(byte* value, int size, int offset = 0)
{
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (Handle->InBitwiseContext)
{
throw new InvalidOperationException(
"Cannot use BufferReader in bytewise mode while in a bitwise context.");
}
#endif
if (!TryBeginReadInternal(size))
{
throw new OverflowException("Reading past the end of the buffer");
}
UnsafeUtility.MemCpy(value + offset, (Handle->BufferPointer + Handle->Position), size);
Handle->Position += size;
}
/// <summary>
/// Read multiple bytes from the stream
/// </summary>
/// <param name="value">Pointer to the destination buffer</param>
/// <param name="size">Number of bytes to read - MUST BE &lt;= BUFFER SIZE</param>
/// <param name="offset">Offset of the byte buffer to store into</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadBytes(ref byte[] value, int size, int offset = 0)
{
fixed (byte* ptr = value)
{
ReadBytes(ptr, size, offset);
}
}
/// <summary>
/// Read multiple bytes from the stream
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">Pointer to the destination buffer</param>
/// <param name="size">Number of bytes to read - MUST BE &lt;= BUFFER SIZE</param>
/// <param name="offset">Offset of the byte buffer to store into</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadBytesSafe(ref byte[] value, int size, int offset = 0)
{
fixed (byte* ptr = value)
{
ReadBytesSafe(ptr, size, offset);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void ReadUnmanaged<T>(out T value) where T : unmanaged
{
fixed (T* ptr = &value)
{
byte* bytes = (byte*)ptr;
ReadBytes(bytes, sizeof(T));
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void ReadUnmanagedSafe<T>(out T value) where T : unmanaged
{
fixed (T* ptr = &value)
{
byte* bytes = (byte*)ptr;
ReadBytesSafe(bytes, sizeof(T));
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void ReadUnmanaged<T>(out T[] value) where T : unmanaged
{
ReadUnmanaged(out int sizeInTs);
int sizeInBytes = sizeInTs * sizeof(T);
value = new T[sizeInTs];
fixed (T* ptr = value)
{
byte* bytes = (byte*)ptr;
ReadBytes(bytes, sizeInBytes);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void ReadUnmanagedSafe<T>(out T[] value) where T : unmanaged
{
ReadUnmanagedSafe(out int sizeInTs);
int sizeInBytes = sizeInTs * sizeof(T);
value = new T[sizeInTs];
fixed (T* ptr = value)
{
byte* bytes = (byte*)ptr;
ReadBytesSafe(bytes, sizeInBytes);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void ReadUnmanaged<T>(out NativeArray<T> value, Allocator allocator) where T : unmanaged
{
ReadUnmanaged(out int sizeInTs);
int sizeInBytes = sizeInTs * sizeof(T);
value = new NativeArray<T>(sizeInTs, allocator);
byte* bytes = (byte*)value.GetUnsafePtr();
ReadBytes(bytes, sizeInBytes);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void ReadUnmanagedSafe<T>(out NativeArray<T> value, Allocator allocator) where T : unmanaged
{
ReadUnmanagedSafe(out int sizeInTs);
int sizeInBytes = sizeInTs * sizeof(T);
value = new NativeArray<T>(sizeInTs, allocator);
byte* bytes = (byte*)value.GetUnsafePtr();
ReadBytesSafe(bytes, sizeInBytes);
}
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void ReadUnmanagedInPlace<T>(ref NativeList<T> value) where T : unmanaged
{
ReadUnmanaged(out int sizeInTs);
int sizeInBytes = sizeInTs * sizeof(T);
value.Resize(sizeInTs, NativeArrayOptions.UninitializedMemory);
byte* bytes = (byte*)value.GetUnsafePtr();
ReadBytes(bytes, sizeInBytes);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal unsafe void ReadUnmanagedSafeInPlace<T>(ref NativeList<T> value) where T : unmanaged
{
ReadUnmanagedSafe(out int sizeInTs);
int sizeInBytes = sizeInTs * sizeof(T);
value.Resize(sizeInTs, NativeArrayOptions.UninitializedMemory);
byte* bytes = (byte*)value.GetUnsafePtr();
ReadBytesSafe(bytes, sizeInBytes);
}
#endif
/// <summary>
/// Read a NetworkSerializable value
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue<T>(out T value, FastBufferWriter.ForNetworkSerializable unused = default) where T : INetworkSerializable, new() => ReadNetworkSerializable(out value);
/// <summary>
/// Read a NetworkSerializable array
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue<T>(out T[] value, FastBufferWriter.ForNetworkSerializable unused = default) where T : INetworkSerializable, new() => ReadNetworkSerializable(out value);
/// <summary>
/// Read a NetworkSerializable value
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out T value, FastBufferWriter.ForNetworkSerializable unused = default) where T : INetworkSerializable, new() => ReadNetworkSerializable(out value);
/// <summary>
/// Read a NetworkSerializable array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out T[] value, FastBufferWriter.ForNetworkSerializable unused = default) where T : INetworkSerializable, new() => ReadNetworkSerializable(out value);
/// <summary>
/// Read a NetworkSerializable NativeArray
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="allocator">The allocator to use to construct the resulting NativeArray</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out NativeArray<T> value, Allocator allocator, FastBufferWriter.ForNetworkSerializable unused = default) where T : unmanaged, INetworkSerializable => ReadNetworkSerializable(out value, allocator);
/// <summary>
/// Read a struct
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue<T>(out T value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy => ReadUnmanaged(out value);
/// <summary>
/// Read a struct array
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue<T>(out T[] value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy => ReadUnmanaged(out value);
/// <summary>
/// Read a struct NativeArray
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="allocator">The allocator to use to construct the resulting NativeArray</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue<T>(out NativeArray<T> value, Allocator allocator, FastBufferWriter.ForGeneric unused = default) where T : unmanaged
{
if (typeof(INetworkSerializable).IsAssignableFrom(typeof(T)))
{
// This calls WriteNetworkSerializable in a way that doesn't require
// any boxing.
NetworkVariableSerialization<NativeArray<T>>.Serializer.ReadWithAllocator(this, out value, allocator);
}
else
{
ReadUnmanaged(out value, allocator);
}
}
/// <summary>
/// Read a struct NativeArray using a Temp allocator. Equivalent to ReadValue(out value, Allocator.Temp)
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueTemp<T>(out NativeArray<T> value, FastBufferWriter.ForGeneric unused = default) where T : unmanaged
{
if (typeof(INetworkSerializable).IsAssignableFrom(typeof(T)))
{
// This calls WriteNetworkSerializable in a way that doesn't require
// any boxing.
NetworkVariableSerialization<NativeArray<T>>.Serializer.ReadWithAllocator(this, out value, Allocator.Temp);
}
else
{
ReadUnmanaged(out value, Allocator.Temp);
}
}
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
/// <summary>
/// Read a struct NativeList
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueInPlace<T>(ref NativeList<T> value, FastBufferWriter.ForGeneric unused = default) where T : unmanaged
{
if (typeof(INetworkSerializable).IsAssignableFrom(typeof(T)))
{
// This calls WriteNetworkSerializable in a way that doesn't require
// any boxing.
NetworkVariableSerialization<NativeList<T>>.Serializer.Read(this, ref value);
}
else
{
ReadUnmanagedInPlace(ref value);
}
}
#endif
/// <summary>
/// Read a struct
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out T value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a struct array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out T[] value, FastBufferWriter.ForStructs unused = default) where T : unmanaged, INetworkSerializeByMemcpy => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a struct NativeArray
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="allocator">The allocator to use to construct the resulting NativeArray</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out NativeArray<T> value, Allocator allocator, FastBufferWriter.ForGeneric unused = default) where T : unmanaged
{
if (typeof(INetworkSerializable).IsAssignableFrom(typeof(T)))
{
// This calls WriteNetworkSerializable in a way that doesn't require
// any boxing.
NetworkVariableSerialization<NativeArray<T>>.Serializer.ReadWithAllocator(this, out value, allocator);
}
else
{
ReadUnmanagedSafe(out value, allocator);
}
}
/// <summary>
/// Read a struct NativeArray using a Temp allocator. Equivalent to ReadValueSafe(out value, Allocator.Temp)
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafeTemp<T>(out NativeArray<T> value, FastBufferWriter.ForGeneric unused = default) where T : unmanaged
{
if (typeof(INetworkSerializable).IsAssignableFrom(typeof(T)))
{
// This calls WriteNetworkSerializable in a way that doesn't require
// any boxing.
NetworkVariableSerialization<NativeArray<T>>.Serializer.ReadWithAllocator(this, out value, Allocator.Temp);
}
else
{
ReadUnmanagedSafe(out value, Allocator.Temp);
}
}
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
/// <summary>
/// Read a struct NativeList
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafeInPlace<T>(ref NativeList<T> value, FastBufferWriter.ForGeneric unused = default) where T : unmanaged
{
if (typeof(INetworkSerializable).IsAssignableFrom(typeof(T)))
{
// This calls WriteNetworkSerializable in a way that doesn't require
// any boxing.
NetworkVariableSerialization<NativeList<T>>.Serializer.Read(this, ref value);
}
else
{
ReadUnmanagedSafeInPlace(ref value);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal void ReadValueSafeInPlace<T>(ref NativeHashSet<T> value) where T : unmanaged, IEquatable<T>
{
ReadUnmanagedSafe(out int length);
value.Clear();
for (var i = 0; i < length; ++i)
{
T val = default;
NetworkVariableSerialization<T>.Read(this, ref val);
value.Add(val);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal void ReadValueSafeInPlace<TKey, TVal>(ref NativeHashMap<TKey, TVal> value)
where TKey : unmanaged, IEquatable<TKey>
where TVal : unmanaged
{
ReadUnmanagedSafe(out int length);
value.Clear();
for (var i = 0; i < length; ++i)
{
TKey key = default;
TVal val = default;
NetworkVariableSerialization<TKey>.Read(this, ref key);
NetworkVariableSerialization<TVal>.Read(this, ref val);
value[key] = val;
}
}
#endif
/// <summary>
/// Read a primitive value (int, bool, etc)
/// Accepts any value that implements the given interfaces, but is not guaranteed to work correctly
/// on values that are not primitives.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue<T>(out T value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T> => ReadUnmanaged(out value);
/// <summary>
/// Read a primitive value array (int, bool, etc)
/// Accepts any value that implements the given interfaces, but is not guaranteed to work correctly
/// on values that are not primitives.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue<T>(out T[] value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T> => ReadUnmanaged(out value);
/// <summary>
/// Read a primitive value (int, bool, etc)
/// Accepts any value that implements the given interfaces, but is not guaranteed to work correctly
/// on values that are not primitives.
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out T value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T> => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a primitive value (int, bool, etc) array
/// Accepts any value that implements the given interfaces, but is not guaranteed to work correctly
/// on values that are not primitives.
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out T[] value, FastBufferWriter.ForPrimitives unused = default) where T : unmanaged, IComparable, IConvertible, IComparable<T>, IEquatable<T> => ReadUnmanagedSafe(out value);
/// <summary>
/// Read an enum value
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue<T>(out T value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum => ReadUnmanaged(out value);
/// <summary>
/// Read an enum array
/// </summary>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue<T>(out T[] value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum => ReadUnmanaged(out value);
/// <summary>
/// Read an enum value
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out T value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum => ReadUnmanagedSafe(out value);
/// <summary>
/// Read an enum array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <typeparam name="T">The type being serialized</typeparam>
/// <param name="value">The values to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out T[] value, FastBufferWriter.ForEnums unused = default) where T : unmanaged, Enum => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector2
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector2 value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector2 array
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector2[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector3
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector3 value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector3 array
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector3[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector2Int
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector2Int value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector2Int array
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector2Int[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector3Int
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector3Int value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector3Int array
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector3Int[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector4
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector4 value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector4
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Vector4[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Quaternion
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Quaternion value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Quaternion array
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Quaternion[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Color
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Color value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Color array
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Color[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Color32
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Color32 value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Color32 array
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Color32[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Ray
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Ray value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Ray array
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Ray[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Ray2D
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Ray2D value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Ray2D array
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValue(out Ray2D[] value) => ReadUnmanaged(out value);
/// <summary>
/// Read a Vector2
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector2 value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector2 array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector2[] value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector3
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector3 value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector3 array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector3[] value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector2Int
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector2Int value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector2Int array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector2Int[] value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector3Int
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector3Int value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector3Int array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector3Int[] value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector4
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector4 value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Vector4 array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Vector4[] value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Quaternion
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Quaternion value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Quaternion array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Quaternion[] value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Color
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Color value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Collor array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Color[] value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Color32
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Color32 value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Color32 array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Color32[] value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Ray
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Ray value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Ray array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Ray[] value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Ray2D
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Ray2D value) => ReadUnmanagedSafe(out value);
/// <summary>
/// Read a Ray2D array
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the values to read</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe(out Ray2D[] value) => ReadUnmanagedSafe(out value);
// There are many FixedString types, but all of them share the interfaces INativeList<bool> and IUTF8Bytes.
// INativeList<bool> provides the Length property
// IUTF8Bytes provides GetUnsafePtr()
// Those two are necessary to serialize FixedStrings efficiently
// - otherwise we'd just be memcpying the whole thing even if
// most of it isn't used.
/// <summary>
/// Read a FixedString value.
/// This method is a little difficult to use, since you have to know the size of the string before
/// reading it, but is useful when the string is a known, fixed size. Note that the size of the
/// string is also encoded, so the size to call TryBeginRead on is actually the fixed size (in bytes)
/// plus sizeof(int)
/// </summary>
/// <param name="value">the value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadValue<T>(out T value, FastBufferWriter.ForFixedStrings unused = default)
where T : unmanaged, INativeList<byte>, IUTF8Bytes
{
ReadUnmanaged(out int length);
value = new T
{
Length = length
};
ReadBytes(value.GetUnsafePtr(), length);
}
/// <summary>
/// Read a FixedString value.
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadValueSafe<T>(out T value, FastBufferWriter.ForFixedStrings unused = default)
where T : unmanaged, INativeList<byte>, IUTF8Bytes
{
ReadUnmanagedSafe(out int length);
value = new T
{
Length = length
};
ReadBytesSafe(value.GetUnsafePtr(), length);
}
/// <summary>
/// Read a FixedString value.
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadValueSafeInPlace<T>(ref T value, FastBufferWriter.ForFixedStrings unused = default)
where T : unmanaged, INativeList<byte>, IUTF8Bytes
{
ReadUnmanagedSafe(out int length);
value.Length = length;
ReadBytesSafe(value.GetUnsafePtr(), length);
}
/// <summary>
/// Read a FixedString NativeArray.
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
/// <param name="allocator">The allocator to use to construct the resulting NativeArray</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadValueSafe<T>(out NativeArray<T> value, Allocator allocator)
where T : unmanaged, INativeList<byte>, IUTF8Bytes
{
ReadUnmanagedSafe(out int length);
value = new NativeArray<T>(length, allocator);
var ptr = (T*)value.GetUnsafePtr();
for (var i = 0; i < length; ++i)
{
ReadValueSafeInPlace(ref ptr[i]);
}
}
/// <summary>
/// Read a FixedString NativeArray using a Temp allocator. Equivalent to ReadValueSafe(out value, Allocator.Temp)
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe void ReadValueSafeTemp<T>(out NativeArray<T> value)
where T : unmanaged, INativeList<byte>, IUTF8Bytes
{
ReadUnmanagedSafe(out int length);
value = new NativeArray<T>(length, Allocator.Temp);
var ptr = (T*)value.GetUnsafePtr();
for (var i = 0; i < length; ++i)
{
ReadValueSafeInPlace(ref ptr[i]);
}
}
/// <summary>
/// Read a FixedString NativeArray using a Temp allocator. Equivalent to ReadValueSafe(out value, Allocator.Temp)
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafe<T>(out T[] value, FastBufferWriter.ForFixedStrings unused = default)
where T : unmanaged, INativeList<byte>, IUTF8Bytes
{
ReadUnmanagedSafe(out int length);
value = new T[length];
for (var i = 0; i < length; ++i)
{
ReadValueSafeInPlace(ref value[i]);
}
}
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
/// <summary>
/// Read a FixedString NativeList.
///
/// "Safe" version - automatically performs bounds checking. Less efficient than bounds checking
/// for multiple reads at once by calling TryBeginRead.
/// </summary>
/// <param name="value">the value to read</param>
/// <param name="unused">An unused parameter used for enabling overload resolution based on generic constraints</param>
/// <typeparam name="T">The type being serialized</typeparam>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReadValueSafeInPlace<T>(ref NativeList<T> value)
where T : unmanaged, INativeList<byte>, IUTF8Bytes
{
ReadUnmanagedSafe(out int length);
value.Resize(length, NativeArrayOptions.UninitializedMemory);
for (var i = 0; i < length; ++i)
{
ReadValueSafeInPlace(ref value.ElementAt(i));
}
}
#endif
}
}