This repository has been archived on 2025-04-22. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
com.unity.netcode.gameobjects/Runtime/NetworkVariable/Serialization/CollectionSerializationUtility.cs
Unity Technologies ed38a4dcc2 com.unity.netcode.gameobjects@2.0.0-pre.1
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [2.0.0-pre.1] - 2024-06-17

### Added

- Added event `NetworkManager.OnSessionOwnerPromoted` that is invoked when a new session owner promotion occurs. (#2948)
- Added `NetworkRigidBodyBase.GetLinearVelocity` and `NetworkRigidBodyBase.SetLinearVelocity` convenience/helper methods. (#2948)
- Added `NetworkRigidBodyBase.GetAngularVelocity` and `NetworkRigidBodyBase.SetAngularVelocity` convenience/helper methods. (#2948)

### Fixed

- Fixed issue when `NetworkTransform` half float precision is enabled and ownership changes the current base position was not being synchronized. (#2948)
- Fixed issue where `OnClientConnected` not being invoked on the session owner when connecting to a new distributed authority session. (#2948)
- Fixed issue where Rigidbody micro-motion (i.e. relatively small velocities) would result in non-authority instances slightly stuttering as the body would come to a rest (i.e. no motion). Now, the threshold value can increase at higher velocities and can decrease slightly below the provided threshold to account for this. (#2948)

### Changed

- Changed the client's owned objects is now returned (`NetworkClient` and `NetworkSpawnManager`) as an array as opposed to a list for performance purposes. (#2948)
- Changed `NetworkTransfrom.TryCommitTransformToServer` to be internal as it will be removed by the final 2.0.0 release. (#2948)
- Changed `NetworkTransformEditor.OnEnable` to a virtual method to be able to customize a `NetworkTransform` derived class by creating a derived editor control from `NetworkTransformEditor`. (#2948)
2024-06-17 00:00:00 +00:00

770 lines
32 KiB
C#

using System;
using System.Collections.Generic;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Mathematics;
namespace Unity.Netcode
{
internal static class CollectionSerializationUtility
{
public static void WriteNativeArrayDelta<T>(FastBufferWriter writer, ref NativeArray<T> value, ref NativeArray<T> previousValue) where T : unmanaged
{
// This bit vector serializes the list of which fields have changed using 1 bit per field.
// This will always be 1 bit per field of the whole array (rounded up to the nearest 8 bits)
// even if there is only one change, so as compared to serializing the index with each item,
// this will use more bandwidth when the overall bandwidth usage is small and the array is large,
// but less when the overall bandwidth usage is large. So it optimizes for the worst case while accepting
// some reduction in efficiency in the best case.
using var changes = new ResizableBitVector(Allocator.Temp);
int minLength = math.min(value.Length, previousValue.Length);
var numChanges = 0;
// Iterate the array, checking which values have changed and marking that in the bit vector
for (var i = 0; i < minLength; ++i)
{
var val = value[i];
var prevVal = previousValue[i];
if (!NetworkVariableSerialization<T>.AreEqual(ref val, ref prevVal))
{
++numChanges;
changes.Set(i);
}
}
// Mark any newly added items as well
// We don't need to mark removed items because they are captured by serializing the length
for (var i = previousValue.Length; i < value.Length; ++i)
{
++numChanges;
changes.Set(i);
}
// If the size of serializing the dela is greater than the size of serializing the whole array (i.e.,
// because almost the entire array has changed and the overhead of the change set increases bandwidth),
// then we just do a normal full serialization instead of a delta.
if (changes.GetSerializedSize() + FastBufferWriter.GetWriteSize<T>() * numChanges > FastBufferWriter.GetWriteSize<T>() * value.Length)
{
// 1 = full serialization
writer.WriteByteSafe(1);
writer.WriteValueSafe(value);
return;
}
// 0 = delta serialization
writer.WriteByte(0);
// Write the length, which will be used on the read side to resize the array
BytePacker.WriteValuePacked(writer, value.Length);
writer.WriteValueSafe(changes);
unsafe
{
var ptr = (T*)value.GetUnsafePtr();
var prevPtr = (T*)previousValue.GetUnsafePtr();
for (int i = 0; i < value.Length; ++i)
{
if (changes.IsSet(i))
{
if (i < previousValue.Length)
{
// If we have an item in the previous array for this index, we can do nested deltas!
NetworkVariableSerialization<T>.WriteDelta(writer, ref ptr[i], ref prevPtr[i]);
}
else
{
// If not, just write it normally
NetworkVariableSerialization<T>.Write(writer, ref ptr[i]);
}
}
}
}
}
public static void ReadNativeArrayDelta<T>(FastBufferReader reader, ref NativeArray<T> value) where T : unmanaged
{
// 1 = full serialization, 0 = delta serialization
reader.ReadByteSafe(out byte full);
if (full == 1)
{
// If we're doing full serialization, we fall back on reading the whole array.
value.Dispose();
reader.ReadValueSafe(out value, Allocator.Persistent);
return;
}
// If not, first read the length and the change bits
ByteUnpacker.ReadValuePacked(reader, out int length);
var changes = new ResizableBitVector(Allocator.Temp);
using var toDispose = changes;
{
reader.ReadNetworkSerializableInPlace(ref changes);
// If the length has changed, we need to resize.
// NativeArray is not resizeable, so we have to dispose and allocate a new one.
var previousLength = value.Length;
if (length != value.Length)
{
var newArray = new NativeArray<T>(length, Allocator.Persistent);
unsafe
{
UnsafeUtility.MemCpy(newArray.GetUnsafePtr(), value.GetUnsafePtr(), math.min(newArray.Length * sizeof(T), value.Length * sizeof(T)));
}
value.Dispose();
value = newArray;
}
unsafe
{
var ptr = (T*)value.GetUnsafePtr();
for (var i = 0; i < value.Length; ++i)
{
if (changes.IsSet(i))
{
if (i < previousLength)
{
// If we have an item to read a delta into, read it as a delta
NetworkVariableSerialization<T>.ReadDelta(reader, ref ptr[i]);
}
else
{
// If not, read as a standard element
NetworkVariableSerialization<T>.Read(reader, ref ptr[i]);
}
}
}
}
}
}
public static void WriteListDelta<T>(FastBufferWriter writer, ref List<T> value, ref List<T> previousValue)
{
// Lists can be null, so we have to handle that case.
// We do that by marking this as a full serialization and using the existing null handling logic
// in NetworkVariableSerialization<List<T>>
if (value == null || previousValue == null)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<List<T>>.Write(writer, ref value);
return;
}
// This bit vector serializes the list of which fields have changed using 1 bit per field.
// This will always be 1 bit per field of the whole array (rounded up to the nearest 8 bits)
// even if there is only one change, so as compared to serializing the index with each item,
// this will use more bandwidth when the overall bandwidth usage is small and the array is large,
// but less when the overall bandwidth usage is large. So it optimizes for the worst case while accepting
// some reduction in efficiency in the best case.
using var changes = new ResizableBitVector(Allocator.Temp);
int minLength = math.min(value.Count, previousValue.Count);
var numChanges = 0;
// Iterate the list, checking which values have changed and marking that in the bit vector
for (var i = 0; i < minLength; ++i)
{
var val = value[i];
var prevVal = previousValue[i];
if (!NetworkVariableSerialization<T>.AreEqual(ref val, ref prevVal))
{
++numChanges;
changes.Set(i);
}
}
// Mark any newly added items as well
// We don't need to mark removed items because they are captured by serializing the length
for (var i = previousValue.Count; i < value.Count; ++i)
{
++numChanges;
changes.Set(i);
}
// If the size of serializing the dela is greater than the size of serializing the whole array (i.e.,
// because almost the entire array has changed and the overhead of the change set increases bandwidth),
// then we just do a normal full serialization instead of a delta.
// In the case of List<T>, it's difficult to know exactly what the serialized size is going to be before
// we serialize it, so we fudge it.
if (numChanges >= value.Count * 0.9)
{
// 1 = full serialization
writer.WriteByteSafe(1);
NetworkVariableSerialization<List<T>>.Write(writer, ref value);
return;
}
// 0 = delta serialization
writer.WriteByteSafe(0);
// Write the length, which will be used on the read side to resize the list
BytePacker.WriteValuePacked(writer, value.Count);
writer.WriteValueSafe(changes);
for (int i = 0; i < value.Count; ++i)
{
if (changes.IsSet(i))
{
var reffable = value[i];
if (i < previousValue.Count)
{
// If we have an item in the previous array for this index, we can do nested deltas!
var prevReffable = previousValue[i];
NetworkVariableSerialization<T>.WriteDelta(writer, ref reffable, ref prevReffable);
}
else
{
// If not, just write it normally.
NetworkVariableSerialization<T>.Write(writer, ref reffable);
}
}
}
}
public static void ReadListDelta<T>(FastBufferReader reader, ref List<T> value)
{
// 1 = full serialization, 0 = delta serialization
reader.ReadByteSafe(out byte full);
if (full == 1)
{
// If we're doing full serialization, we fall back on reading the whole list.
NetworkVariableSerialization<List<T>>.Read(reader, ref value);
return;
}
// If not, first read the length and the change bits
ByteUnpacker.ReadValuePacked(reader, out int length);
var changes = new ResizableBitVector(Allocator.Temp);
using var toDispose = changes;
{
reader.ReadNetworkSerializableInPlace(ref changes);
// If the list shrank, we need to resize it down.
// List<T> has no method to reserve space for future elements,
// so if we have to grow it, we just do that using Add() below.
if (length < value.Count)
{
value.RemoveRange(length, value.Count - length);
}
for (var i = 0; i < length; ++i)
{
if (changes.IsSet(i))
{
if (i < value.Count)
{
// If we have an item to read a delta into, read it as a delta
T item = value[i];
NetworkVariableSerialization<T>.ReadDelta(reader, ref item);
value[i] = item;
}
else
{
// If not, just read it as a standard item.
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Add(item);
}
}
}
}
}
// For HashSet and Dictionary, we need to have some local space to hold lists we need to serialize.
// We don't want to do allocations all the time and we know each one needs a maximum of three lists,
// so we're going to keep static lists that we can reuse in these methods.
private static class ListCache<T>
{
private static List<T> s_AddedList = new List<T>();
private static List<T> s_RemovedList = new List<T>();
private static List<T> s_ChangedList = new List<T>();
public static List<T> GetAddedList()
{
s_AddedList.Clear();
return s_AddedList;
}
public static List<T> GetRemovedList()
{
s_RemovedList.Clear();
return s_RemovedList;
}
public static List<T> GetChangedList()
{
s_ChangedList.Clear();
return s_ChangedList;
}
}
public static void WriteHashSetDelta<T>(FastBufferWriter writer, ref HashSet<T> value, ref HashSet<T> previousValue) where T : IEquatable<T>
{
// HashSets can be null, so we have to handle that case.
// We do that by marking this as a full serialization and using the existing null handling logic
// in NetworkVariableSerialization<HashSet<T>>
if (value == null || previousValue == null)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<HashSet<T>>.Write(writer, ref value);
return;
}
// No changed array because a set can't have a "changed" element, only added and removed.
var added = ListCache<T>.GetAddedList();
var removed = ListCache<T>.GetRemovedList();
// collect the new elements
foreach (var item in value)
{
if (!previousValue.Contains(item))
{
added.Add(item);
}
}
// collect the removed elements
foreach (var item in previousValue)
{
if (!value.Contains(item))
{
removed.Add(item);
}
}
// If we've got more changes than total items, we just do a full serialization
if (added.Count + removed.Count >= value.Count)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<HashSet<T>>.Write(writer, ref value);
return;
}
writer.WriteByteSafe(0);
// Write out the added and removed arrays.
writer.WriteValueSafe(added.Count);
for (var i = 0; i < added.Count; ++i)
{
var item = added[i];
NetworkVariableSerialization<T>.Write(writer, ref item);
}
writer.WriteValueSafe(removed.Count);
for (var i = 0; i < removed.Count; ++i)
{
var item = removed[i];
NetworkVariableSerialization<T>.Write(writer, ref item);
}
}
public static void ReadHashSetDelta<T>(FastBufferReader reader, ref HashSet<T> value) where T : IEquatable<T>
{
// 1 = full serialization, 0 = delta serialization
reader.ReadByteSafe(out byte full);
if (full != 0)
{
NetworkVariableSerialization<HashSet<T>>.Read(reader, ref value);
return;
}
// Read in the added and removed values
reader.ReadValueSafe(out int addedCount);
for (var i = 0; i < addedCount; ++i)
{
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Add(item);
}
reader.ReadValueSafe(out int removedCount);
for (var i = 0; i < removedCount; ++i)
{
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Remove(item);
}
}
public static void WriteDictionaryDelta<TKey, TVal>(FastBufferWriter writer, ref Dictionary<TKey, TVal> value, ref Dictionary<TKey, TVal> previousValue)
where TKey : IEquatable<TKey>
{
if (value == null || previousValue == null)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<Dictionary<TKey, TVal>>.Write(writer, ref value);
return;
}
var added = ListCache<KeyValuePair<TKey, TVal>>.GetAddedList();
var changed = ListCache<KeyValuePair<TKey, TVal>>.GetRemovedList();
var removed = ListCache<KeyValuePair<TKey, TVal>>.GetChangedList();
// Collect items that have been added or have changed
foreach (var item in value)
{
var val = item.Value;
var hasPrevVal = previousValue.TryGetValue(item.Key, out var prevVal);
if (!hasPrevVal)
{
added.Add(item);
}
else if (!NetworkVariableSerialization<TVal>.AreEqual(ref val, ref prevVal))
{
changed.Add(item);
}
}
// collect the items that have been removed
foreach (var item in previousValue)
{
if (!value.ContainsKey(item.Key))
{
removed.Add(item);
}
}
// If there are more changes than total values, just do a full serialization
if (added.Count + removed.Count + changed.Count >= value.Count)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<Dictionary<TKey, TVal>>.Write(writer, ref value);
return;
}
writer.WriteByteSafe(0);
// Else, write out the added, removed, and changed arrays
writer.WriteValueSafe(added.Count);
for (var i = 0; i < added.Count; ++i)
{
(var key, var val) = (added[i].Key, added[i].Value);
NetworkVariableSerialization<TKey>.Write(writer, ref key);
NetworkVariableSerialization<TVal>.Write(writer, ref val);
}
writer.WriteValueSafe(removed.Count);
for (var i = 0; i < removed.Count; ++i)
{
var key = removed[i].Key;
NetworkVariableSerialization<TKey>.Write(writer, ref key);
}
writer.WriteValueSafe(changed.Count);
for (var i = 0; i < changed.Count; ++i)
{
(var key, var val) = (changed[i].Key, changed[i].Value);
NetworkVariableSerialization<TKey>.Write(writer, ref key);
NetworkVariableSerialization<TVal>.Write(writer, ref val);
}
}
public static void ReadDictionaryDelta<TKey, TVal>(FastBufferReader reader, ref Dictionary<TKey, TVal> value)
where TKey : IEquatable<TKey>
{
// 1 = full serialization, 0 = delta serialization
reader.ReadByteSafe(out byte full);
if (full != 0)
{
NetworkVariableSerialization<Dictionary<TKey, TVal>>.Read(reader, ref value);
return;
}
// Added
reader.ReadValueSafe(out int length);
for (var i = 0; i < length; ++i)
{
(TKey key, TVal val) = (default, default);
NetworkVariableSerialization<TKey>.Read(reader, ref key);
NetworkVariableSerialization<TVal>.Read(reader, ref val);
value.Add(key, val);
}
// Removed
reader.ReadValueSafe(out length);
for (var i = 0; i < length; ++i)
{
TKey key = default;
NetworkVariableSerialization<TKey>.Read(reader, ref key);
value.Remove(key);
}
// Changed
reader.ReadValueSafe(out length);
for (var i = 0; i < length; ++i)
{
(TKey key, TVal val) = (default, default);
NetworkVariableSerialization<TKey>.Read(reader, ref key);
NetworkVariableSerialization<TVal>.Read(reader, ref val);
value[key] = val;
}
}
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
public static void WriteNativeListDelta<T>(FastBufferWriter writer, ref NativeList<T> value, ref NativeList<T> previousValue) where T : unmanaged
{
// See WriteListDelta and WriteNativeArrayDelta to understand most of this. It's basically the same,
// just adjusted for the NativeList API
using var changes = new ResizableBitVector(Allocator.Temp);
int minLength = math.min(value.Length, previousValue.Length);
var numChanges = 0;
for (var i = 0; i < minLength; ++i)
{
var val = value[i];
var prevVal = previousValue[i];
if (!NetworkVariableSerialization<T>.AreEqual(ref val, ref prevVal))
{
++numChanges;
changes.Set(i);
}
}
for (var i = previousValue.Length; i < value.Length; ++i)
{
++numChanges;
changes.Set(i);
}
if (changes.GetSerializedSize() + FastBufferWriter.GetWriteSize<T>() * numChanges > FastBufferWriter.GetWriteSize<T>() * value.Length)
{
writer.WriteByteSafe(1);
writer.WriteValueSafe(value);
return;
}
writer.WriteByte(0);
BytePacker.WriteValuePacked(writer, value.Length);
writer.WriteValueSafe(changes);
unsafe
{
#if UTP_TRANSPORT_2_0_ABOVE
var ptr = value.GetUnsafePtr();
var prevPtr = previousValue.GetUnsafePtr();
#else
var ptr = (T*)value.GetUnsafePtr();
var prevPtr = (T*)previousValue.GetUnsafePtr();
#endif
for (int i = 0; i < value.Length; ++i)
{
if (changes.IsSet(i))
{
if (i < previousValue.Length)
{
NetworkVariableSerialization<T>.WriteDelta(writer, ref ptr[i], ref prevPtr[i]);
}
else
{
NetworkVariableSerialization<T>.Write(writer, ref ptr[i]);
}
}
}
}
}
public static void ReadNativeListDelta<T>(FastBufferReader reader, ref NativeList<T> value) where T : unmanaged
{
// See ReadListDelta and ReadNativeArrayDelta to understand most of this. It's basically the same,
// just adjusted for the NativeList API
reader.ReadByteSafe(out byte full);
if (full == 1)
{
reader.ReadValueSafeInPlace(ref value);
return;
}
ByteUnpacker.ReadValuePacked(reader, out int length);
var changes = new ResizableBitVector(Allocator.Temp);
using var toDispose = changes;
{
reader.ReadNetworkSerializableInPlace(ref changes);
var previousLength = value.Length;
// The one big difference between this and NativeArray/List is that NativeList supports
// easy and fast resizing and reserving space.
if (length != value.Length)
{
value.Resize(length, NativeArrayOptions.UninitializedMemory);
}
unsafe
{
#if UTP_TRANSPORT_2_0_ABOVE
var ptr = value.GetUnsafePtr();
#else
var ptr = (T*)value.GetUnsafePtr();
#endif
for (var i = 0; i < value.Length; ++i)
{
if (changes.IsSet(i))
{
if (i < previousLength)
{
NetworkVariableSerialization<T>.ReadDelta(reader, ref ptr[i]);
}
else
{
NetworkVariableSerialization<T>.Read(reader, ref ptr[i]);
}
}
}
}
}
}
public static unsafe void WriteNativeHashSetDelta<T>(FastBufferWriter writer, ref NativeHashSet<T> value, ref NativeHashSet<T> previousValue) where T : unmanaged, IEquatable<T>
{
// See WriteHashSet; this is the same algorithm, adjusted for the NativeHashSet API
var added = stackalloc T[value.Count];
var removed = stackalloc T[previousValue.Count];
var addedCount = 0;
var removedCount = 0;
foreach (var item in value)
{
if (!previousValue.Contains(item))
{
added[addedCount] = item;
++addedCount;
}
}
foreach (var item in previousValue)
{
if (!value.Contains(item))
{
removed[removedCount] = item;
++removedCount;
}
}
#if UTP_TRANSPORT_2_0_ABOVE
if (addedCount + removedCount >= value.Count)
#else
if (addedCount + removedCount >= value.Count())
#endif
{
writer.WriteByteSafe(1);
writer.WriteValueSafe(value);
return;
}
writer.WriteByteSafe(0);
writer.WriteValueSafe(addedCount);
for (var i = 0; i < addedCount; ++i)
{
NetworkVariableSerialization<T>.Write(writer, ref added[i]);
}
writer.WriteValueSafe(removedCount);
for (var i = 0; i < removedCount; ++i)
{
NetworkVariableSerialization<T>.Write(writer, ref removed[i]);
}
}
public static void ReadNativeHashSetDelta<T>(FastBufferReader reader, ref NativeHashSet<T> value) where T : unmanaged, IEquatable<T>
{
// See ReadHashSet; this is the same algorithm, adjusted for the NativeHashSet API
reader.ReadByteSafe(out byte full);
if (full != 0)
{
reader.ReadValueSafeInPlace(ref value);
return;
}
reader.ReadValueSafe(out int addedCount);
for (var i = 0; i < addedCount; ++i)
{
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Add(item);
}
reader.ReadValueSafe(out int removedCount);
for (var i = 0; i < removedCount; ++i)
{
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Remove(item);
}
}
public static unsafe void WriteNativeHashMapDelta<TKey, TVal>(FastBufferWriter writer, ref NativeHashMap<TKey, TVal> value, ref NativeHashMap<TKey, TVal> previousValue)
where TKey : unmanaged, IEquatable<TKey>
where TVal : unmanaged
{
// See WriteDictionary; this is the same algorithm, adjusted for the NativeHashMap API
#if UTP_TRANSPORT_2_0_ABOVE
var added = stackalloc KVPair<TKey, TVal>[value.Count];
var changed = stackalloc KVPair<TKey, TVal>[value.Count];
var removed = stackalloc KVPair<TKey, TVal>[previousValue.Count];
#else
var added = stackalloc KeyValue<TKey, TVal>[value.Count()];
var changed = stackalloc KeyValue<TKey, TVal>[value.Count()];
var removed = stackalloc KeyValue<TKey, TVal>[previousValue.Count()];
#endif
var addedCount = 0;
var changedCount = 0;
var removedCount = 0;
foreach (var item in value)
{
var hasPrevVal = previousValue.TryGetValue(item.Key, out var prevVal);
if (!hasPrevVal)
{
added[addedCount] = item;
++addedCount;
}
else if (!NetworkVariableSerialization<TVal>.AreEqual(ref item.Value, ref prevVal))
{
changed[changedCount] = item;
++changedCount;
}
}
foreach (var item in previousValue)
{
if (!value.ContainsKey(item.Key))
{
removed[removedCount] = item;
++removedCount;
}
}
#if UTP_TRANSPORT_2_0_ABOVE
if (addedCount + removedCount + changedCount >= value.Count)
#else
if (addedCount + removedCount + changedCount >= value.Count())
#endif
{
writer.WriteByteSafe(1);
writer.WriteValueSafe(value);
return;
}
writer.WriteByteSafe(0);
writer.WriteValueSafe(addedCount);
for (var i = 0; i < addedCount; ++i)
{
(var key, var val) = (added[i].Key, added[i].Value);
NetworkVariableSerialization<TKey>.Write(writer, ref key);
NetworkVariableSerialization<TVal>.Write(writer, ref val);
}
writer.WriteValueSafe(removedCount);
for (var i = 0; i < removedCount; ++i)
{
var key = removed[i].Key;
NetworkVariableSerialization<TKey>.Write(writer, ref key);
}
writer.WriteValueSafe(changedCount);
for (var i = 0; i < changedCount; ++i)
{
(var key, var val) = (changed[i].Key, changed[i].Value);
NetworkVariableSerialization<TKey>.Write(writer, ref key);
NetworkVariableSerialization<TVal>.Write(writer, ref val);
}
}
public static void ReadNativeHashMapDelta<TKey, TVal>(FastBufferReader reader, ref NativeHashMap<TKey, TVal> value)
where TKey : unmanaged, IEquatable<TKey>
where TVal : unmanaged
{
// See ReadDictionary; this is the same algorithm, adjusted for the NativeHashMap API
reader.ReadByteSafe(out byte full);
if (full != 0)
{
reader.ReadValueSafeInPlace(ref value);
return;
}
// Added
reader.ReadValueSafe(out int length);
for (var i = 0; i < length; ++i)
{
(TKey key, TVal val) = (default, default);
NetworkVariableSerialization<TKey>.Read(reader, ref key);
NetworkVariableSerialization<TVal>.Read(reader, ref val);
value.Add(key, val);
}
// Removed
reader.ReadValueSafe(out length);
for (var i = 0; i < length; ++i)
{
TKey key = default;
NetworkVariableSerialization<TKey>.Read(reader, ref key);
value.Remove(key);
}
// Changed
reader.ReadValueSafe(out length);
for (var i = 0; i < length; ++i)
{
(TKey key, TVal val) = (default, default);
NetworkVariableSerialization<TKey>.Read(reader, ref key);
NetworkVariableSerialization<TVal>.Read(reader, ref val);
value[key] = val;
}
}
#endif
}
}