using System.Runtime.CompilerServices;
using UnityEngine;
namespace Unity.Netcode
{
///
/// A Smallest Three Quaternion Compressor Implementation
///
///
/// Explanation of why "The smallest three":
/// Since a normalized Quaternion's unit value is 1.0f:
/// x*x + y*y + z*z + w*w = M*M (where M is the magnitude of the vector)
/// If w was the largest value and the quaternion is normalized:
/// M = 1.0f (which M * M would still yield 1.0f)
/// w*w = M*M - (x*x + y*y + z*z) or Mathf.Sqrt(1.0f - (x*x + y*y + z*z))
/// w = Math.Sqrt(1.0f - (x*x + y*y + z*z))
/// Using the largest number avoids potential loss of precision in the smallest three values.
///
public static class QuaternionCompressor
{
private const ushort k_PrecisionMask = (1 << 9) - 1;
// Square root of 2 over 2 (Mathf.Sqrt(2.0f) / 2.0f == 1.0f / Mathf.Sqrt(2.0f))
// This provides encoding the smallest three components into a (+/-) Mathf.Sqrt(2.0f) / 2.0f range
private const float k_SqrtTwoOverTwoEncoding = 0.70710678118654752440084436210485f;
// We can further improve the encoding compression by dividing k_SqrtTwoOverTwo into 1.0f and multiplying that
// by the precision mask (minor reduction of runtime calculations)
private const float k_CompressionEcodingMask = (1.0f / k_SqrtTwoOverTwoEncoding) * k_PrecisionMask;
// Used to shift the negative bit to the 10th bit position when compressing and encoding
private const ushort k_ShiftNegativeBit = 9;
// We can do the same for our decoding and decompression by dividing k_PrecisionMask into 1.0 and multiplying
// that by k_SqrtTwoOverTwo (minor reduction of runtime calculations)
private const float k_DcompressionDecodingMask = (1.0f / k_PrecisionMask) * k_SqrtTwoOverTwoEncoding;
// The sign bit position (10th bit) used when decompressing and decoding
private const ushort k_NegShortBit = 0x200;
// Negative bit set values
private const ushort k_True = 1;
private const ushort k_False = 0;
// Used to store the absolute value of the 4 quaternion elements
private static Quaternion s_QuatAbsValues = Quaternion.identity;
///
/// Compresses a Quaternion into an unsigned integer
///
/// the to be compressed
/// the compressed as an unsigned integer
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint CompressQuaternion(ref Quaternion quaternion)
{
// Store off the absolute value for each Quaternion element
s_QuatAbsValues[0] = Mathf.Abs(quaternion[0]);
s_QuatAbsValues[1] = Mathf.Abs(quaternion[1]);
s_QuatAbsValues[2] = Mathf.Abs(quaternion[2]);
s_QuatAbsValues[3] = Mathf.Abs(quaternion[3]);
// Get the largest element value of the quaternion to know what the remaining "Smallest Three" values are
var quatMax = Mathf.Max(s_QuatAbsValues[0], s_QuatAbsValues[1], s_QuatAbsValues[2], s_QuatAbsValues[3]);
// Find the index of the largest element so we can skip that element while compressing and decompressing
var indexToSkip = (ushort)(s_QuatAbsValues[0] == quatMax ? 0 : s_QuatAbsValues[1] == quatMax ? 1 : s_QuatAbsValues[2] == quatMax ? 2 : 3);
// Get the sign of the largest element which is all that is needed when calculating the sum of squares of a normalized quaternion.
var quatMaxSign = (quaternion[indexToSkip] < 0 ? k_True : k_False);
// Start with the index to skip which will be shifted to the highest two bits
var compressed = (uint)indexToSkip;
// Step 1: Start with the first element
var currentIndex = 0;
// Step 2: If we are on the index to skip preserve the current compressed value, otherwise proceed to step 3 and 4
// Step 3: Get the sign of the element we are processing. If it is the not the same as the largest value's sign bit then we set the bit
// Step 4: Get the compressed and encoded value by multiplying the absolute value of the current element by k_CompressionEcodingMask and round that result up
compressed = currentIndex != indexToSkip ? (compressed << 10) | (uint)((quaternion[currentIndex] < 0 ? k_True : k_False) != quatMaxSign ? k_True : k_False) << k_ShiftNegativeBit | (ushort)Mathf.Round(k_CompressionEcodingMask * s_QuatAbsValues[currentIndex]) : compressed;
currentIndex++;
// Repeat the last 3 steps for the remaining elements
compressed = currentIndex != indexToSkip ? (compressed << 10) | (uint)((quaternion[currentIndex] < 0 ? k_True : k_False) != quatMaxSign ? k_True : k_False) << k_ShiftNegativeBit | (ushort)Mathf.Round(k_CompressionEcodingMask * s_QuatAbsValues[currentIndex]) : compressed;
currentIndex++;
compressed = currentIndex != indexToSkip ? (compressed << 10) | (uint)((quaternion[currentIndex] < 0 ? k_True : k_False) != quatMaxSign ? k_True : k_False) << k_ShiftNegativeBit | (ushort)Mathf.Round(k_CompressionEcodingMask * s_QuatAbsValues[currentIndex]) : compressed;
currentIndex++;
compressed = currentIndex != indexToSkip ? (compressed << 10) | (uint)((quaternion[currentIndex] < 0 ? k_True : k_False) != quatMaxSign ? k_True : k_False) << k_ShiftNegativeBit | (ushort)Mathf.Round(k_CompressionEcodingMask * s_QuatAbsValues[currentIndex]) : compressed;
// Return the compress quaternion
return compressed;
}
///
/// Decompress a compressed quaternion
///
/// quaternion to store the decompressed values within
/// the compressed quaternion
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void DecompressQuaternion(ref Quaternion quaternion, uint compressed)
{
// Get the last two bits for the index to skip (0-3)
var indexToSkip = (int)(compressed >> 30);
// Reverse out the values while skipping over the largest value index
var sumOfSquaredMagnitudes = 0.0f;
for (int i = 3; i >= 0; --i)
{
if (i == indexToSkip)
{
continue;
}
// Check the negative bit and multiply that result with the decompressed and decoded value
quaternion[i] = ((compressed & k_NegShortBit) > 0 ? -1.0f : 1.0f) * ((compressed & k_PrecisionMask) * k_DcompressionDecodingMask);
sumOfSquaredMagnitudes += quaternion[i] * quaternion[i];
compressed = compressed >> 10;
}
// Since a normalized quaternion's magnitude is 1.0f, we subtract the sum of the squared smallest three from the unit value and take
// the square root of the difference to find the final largest value
quaternion[indexToSkip] = Mathf.Sqrt(1.0f - sumOfSquaredMagnitudes);
}
}
}