using System;
using System.Collections.Generic;
using Unity.Collections;
using UnityEngine;
namespace Unity.Netcode
{
public class RpcException : Exception
{
public RpcException(string message) : base(message)
{
}
}
///
/// The base class to override to write network code. Inherits MonoBehaviour
///
public abstract class NetworkBehaviour : MonoBehaviour
{
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `public`
internal delegate void RpcReceiveHandler(NetworkBehaviour behaviour, FastBufferReader reader, __RpcParams parameters);
// RuntimeAccessModifiersILPP will make this `public`
internal static readonly Dictionary> __rpc_func_table = new Dictionary>();
#if DEVELOPMENT_BUILD || UNITY_EDITOR
// RuntimeAccessModifiersILPP will make this `public`
internal static readonly Dictionary> __rpc_name_table = new Dictionary>();
#endif
// RuntimeAccessModifiersILPP will make this `protected`
internal enum __RpcExecStage
{
// Technically will overlap with None and Server
// but it doesn't matter since we don't use None and Server
Send = 0,
Execute = 1,
// Backward compatibility, not used...
None = 0,
Server = 1,
Client = 2,
}
// NetworkBehaviourILPP will override this in derived classes to return the name of the concrete type
internal virtual string __getTypeName() => nameof(NetworkBehaviour);
[NonSerialized]
// RuntimeAccessModifiersILPP will make this `protected`
internal __RpcExecStage __rpc_exec_stage = __RpcExecStage.Send;
#pragma warning restore IDE1006 // restore naming rule violation check
private const int k_RpcMessageDefaultSize = 1024; // 1k
private const int k_RpcMessageMaximumSize = 1024 * 64; // 64k
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal FastBufferWriter __beginSendServerRpc(uint rpcMethodId, ServerRpcParams serverRpcParams, RpcDelivery rpcDelivery)
#pragma warning restore IDE1006 // restore naming rule violation check
{
return new FastBufferWriter(k_RpcMessageDefaultSize, Allocator.Temp, k_RpcMessageMaximumSize);
}
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal void __endSendServerRpc(ref FastBufferWriter bufferWriter, uint rpcMethodId, ServerRpcParams serverRpcParams, RpcDelivery rpcDelivery)
#pragma warning restore IDE1006 // restore naming rule violation check
{
var serverRpcMessage = new ServerRpcMessage
{
Metadata = new RpcMetadata
{
NetworkObjectId = NetworkObjectId,
NetworkBehaviourId = NetworkBehaviourId,
NetworkRpcMethodId = rpcMethodId,
},
WriteBuffer = bufferWriter
};
NetworkDelivery networkDelivery;
switch (rpcDelivery)
{
default:
case RpcDelivery.Reliable:
networkDelivery = NetworkDelivery.ReliableFragmentedSequenced;
break;
case RpcDelivery.Unreliable:
if (bufferWriter.Length > NetworkManager.MessageManager.NonFragmentedMessageMaxSize)
{
throw new OverflowException("RPC parameters are too large for unreliable delivery.");
}
networkDelivery = NetworkDelivery.Unreliable;
break;
}
var rpcWriteSize = 0;
// If we are a server/host then we just no op and send to ourself
if (IsHost || IsServer)
{
using var tempBuffer = new FastBufferReader(bufferWriter, Allocator.Temp);
var context = new NetworkContext
{
SenderId = NetworkManager.ServerClientId,
Timestamp = NetworkManager.RealTimeProvider.RealTimeSinceStartup,
SystemOwner = NetworkManager,
// header information isn't valid since it's not a real message.
// RpcMessage doesn't access this stuff so it's just left empty.
Header = new NetworkMessageHeader(),
SerializedHeaderSize = 0,
MessageSize = 0
};
serverRpcMessage.ReadBuffer = tempBuffer;
serverRpcMessage.Handle(ref context);
rpcWriteSize = tempBuffer.Length;
}
else
{
rpcWriteSize = NetworkManager.ConnectionManager.SendMessage(ref serverRpcMessage, networkDelivery, NetworkManager.ServerClientId);
}
bufferWriter.Dispose();
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (__rpc_name_table[GetType()].TryGetValue(rpcMethodId, out var rpcMethodName))
{
NetworkManager.NetworkMetrics.TrackRpcSent(
NetworkManager.ServerClientId,
NetworkObject,
rpcMethodName,
__getTypeName(),
rpcWriteSize);
}
#endif
}
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal FastBufferWriter __beginSendClientRpc(uint rpcMethodId, ClientRpcParams clientRpcParams, RpcDelivery rpcDelivery)
#pragma warning restore IDE1006 // restore naming rule violation check
{
return new FastBufferWriter(k_RpcMessageDefaultSize, Allocator.Temp, k_RpcMessageMaximumSize);
}
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal void __endSendClientRpc(ref FastBufferWriter bufferWriter, uint rpcMethodId, ClientRpcParams clientRpcParams, RpcDelivery rpcDelivery)
#pragma warning restore IDE1006 // restore naming rule violation check
{
var clientRpcMessage = new ClientRpcMessage
{
Metadata = new RpcMetadata
{
NetworkObjectId = NetworkObjectId,
NetworkBehaviourId = NetworkBehaviourId,
NetworkRpcMethodId = rpcMethodId,
},
WriteBuffer = bufferWriter
};
NetworkDelivery networkDelivery;
switch (rpcDelivery)
{
default:
case RpcDelivery.Reliable:
networkDelivery = NetworkDelivery.ReliableFragmentedSequenced;
break;
case RpcDelivery.Unreliable:
if (bufferWriter.Length > NetworkManager.MessageManager.NonFragmentedMessageMaxSize)
{
throw new OverflowException("RPC parameters are too large for unreliable delivery.");
}
networkDelivery = NetworkDelivery.Unreliable;
break;
}
var rpcWriteSize = 0;
// We check to see if we need to shortcut for the case where we are the host/server and we can send a clientRPC
// to ourself. Sadly we have to figure that out from the list of clientIds :(
bool shouldSendToHost = false;
if (clientRpcParams.Send.TargetClientIds != null)
{
foreach (var targetClientId in clientRpcParams.Send.TargetClientIds)
{
if (targetClientId == NetworkManager.ServerClientId)
{
shouldSendToHost = true;
break;
}
// Check to make sure we are sending to only observers, if not log an error.
if (NetworkManager.LogLevel >= LogLevel.Error && !NetworkObject.Observers.Contains(targetClientId))
{
NetworkLog.LogError(GenerateObserverErrorMessage(clientRpcParams, targetClientId));
}
}
rpcWriteSize = NetworkManager.ConnectionManager.SendMessage(ref clientRpcMessage, networkDelivery, in clientRpcParams.Send.TargetClientIds);
}
else if (clientRpcParams.Send.TargetClientIdsNativeArray != null)
{
foreach (var targetClientId in clientRpcParams.Send.TargetClientIdsNativeArray)
{
if (targetClientId == NetworkManager.ServerClientId)
{
shouldSendToHost = true;
break;
}
// Check to make sure we are sending to only observers, if not log an error.
if (NetworkManager.LogLevel >= LogLevel.Error && !NetworkObject.Observers.Contains(targetClientId))
{
NetworkLog.LogError(GenerateObserverErrorMessage(clientRpcParams, targetClientId));
}
}
rpcWriteSize = NetworkManager.ConnectionManager.SendMessage(ref clientRpcMessage, networkDelivery, clientRpcParams.Send.TargetClientIdsNativeArray.Value);
}
else
{
var observerEnumerator = NetworkObject.Observers.GetEnumerator();
while (observerEnumerator.MoveNext())
{
// Skip over the host
if (IsHost && observerEnumerator.Current == NetworkManager.LocalClientId)
{
shouldSendToHost = true;
continue;
}
rpcWriteSize = NetworkManager.ConnectionManager.SendMessage(ref clientRpcMessage, networkDelivery, observerEnumerator.Current);
}
}
// If we are a server/host then we just no op and send to ourself
if (shouldSendToHost)
{
using var tempBuffer = new FastBufferReader(bufferWriter, Allocator.Temp);
var context = new NetworkContext
{
SenderId = NetworkManager.ServerClientId,
Timestamp = NetworkManager.RealTimeProvider.RealTimeSinceStartup,
SystemOwner = NetworkManager,
// header information isn't valid since it's not a real message.
// RpcMessage doesn't access this stuff so it's just left empty.
Header = new NetworkMessageHeader(),
SerializedHeaderSize = 0,
MessageSize = 0
};
clientRpcMessage.ReadBuffer = tempBuffer;
clientRpcMessage.Handle(ref context);
}
bufferWriter.Dispose();
#if DEVELOPMENT_BUILD || UNITY_EDITOR
if (__rpc_name_table[GetType()].TryGetValue(rpcMethodId, out var rpcMethodName))
{
if (clientRpcParams.Send.TargetClientIds != null)
{
foreach (var targetClientId in clientRpcParams.Send.TargetClientIds)
{
NetworkManager.NetworkMetrics.TrackRpcSent(
targetClientId,
NetworkObject,
rpcMethodName,
__getTypeName(),
rpcWriteSize);
}
}
else if (clientRpcParams.Send.TargetClientIdsNativeArray != null)
{
foreach (var targetClientId in clientRpcParams.Send.TargetClientIdsNativeArray)
{
NetworkManager.NetworkMetrics.TrackRpcSent(
targetClientId,
NetworkObject,
rpcMethodName,
__getTypeName(),
rpcWriteSize);
}
}
else
{
var observerEnumerator = NetworkObject.Observers.GetEnumerator();
while (observerEnumerator.MoveNext())
{
NetworkManager.NetworkMetrics.TrackRpcSent(
observerEnumerator.Current,
NetworkObject,
rpcMethodName,
__getTypeName(),
rpcWriteSize);
}
}
}
#endif
}
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal FastBufferWriter __beginSendRpc(uint rpcMethodId, RpcParams rpcParams, RpcAttribute.RpcAttributeParams attributeParams, SendTo defaultTarget, RpcDelivery rpcDelivery)
#pragma warning restore IDE1006 // restore naming rule violation check
{
if (attributeParams.RequireOwnership && !IsOwner)
{
throw new RpcException("This RPC can only be sent by its owner.");
}
return new FastBufferWriter(k_RpcMessageDefaultSize, Allocator.Temp, k_RpcMessageMaximumSize);
}
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal void __endSendRpc(ref FastBufferWriter bufferWriter, uint rpcMethodId, RpcParams rpcParams, RpcAttribute.RpcAttributeParams attributeParams, SendTo defaultTarget, RpcDelivery rpcDelivery)
#pragma warning restore IDE1006 // restore naming rule violation check
{
var rpcMessage = new RpcMessage
{
Metadata = new RpcMetadata
{
NetworkObjectId = NetworkObjectId,
NetworkBehaviourId = NetworkBehaviourId,
NetworkRpcMethodId = rpcMethodId,
},
SenderClientId = NetworkManager.LocalClientId,
WriteBuffer = bufferWriter
};
NetworkDelivery networkDelivery;
switch (rpcDelivery)
{
default:
case RpcDelivery.Reliable:
networkDelivery = NetworkDelivery.ReliableFragmentedSequenced;
break;
case RpcDelivery.Unreliable:
if (bufferWriter.Length > NetworkManager.MessageManager.NonFragmentedMessageMaxSize)
{
throw new OverflowException("RPC parameters are too large for unreliable delivery.");
}
networkDelivery = NetworkDelivery.Unreliable;
break;
}
if (rpcParams.Send.Target == null)
{
switch (defaultTarget)
{
case SendTo.Everyone:
rpcParams.Send.Target = RpcTarget.Everyone;
break;
case SendTo.Owner:
rpcParams.Send.Target = RpcTarget.Owner;
break;
case SendTo.Server:
rpcParams.Send.Target = RpcTarget.Server;
break;
case SendTo.NotServer:
rpcParams.Send.Target = RpcTarget.NotServer;
break;
case SendTo.NotMe:
rpcParams.Send.Target = RpcTarget.NotMe;
break;
case SendTo.NotOwner:
rpcParams.Send.Target = RpcTarget.NotOwner;
break;
case SendTo.Me:
rpcParams.Send.Target = RpcTarget.Me;
break;
case SendTo.ClientsAndHost:
rpcParams.Send.Target = RpcTarget.ClientsAndHost;
break;
case SendTo.SpecifiedInParams:
throw new RpcException("This method requires a runtime-specified send target.");
}
}
else if (defaultTarget != SendTo.SpecifiedInParams && !attributeParams.AllowTargetOverride)
{
throw new RpcException("Target override is not allowed for this method.");
}
if (rpcParams.Send.LocalDeferMode == LocalDeferMode.Default)
{
rpcParams.Send.LocalDeferMode = attributeParams.DeferLocal ? LocalDeferMode.Defer : LocalDeferMode.SendImmediate;
}
rpcParams.Send.Target.Send(this, ref rpcMessage, networkDelivery, rpcParams);
bufferWriter.Dispose();
}
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal static NativeList __createNativeList() where T : unmanaged
#pragma warning restore IDE1006 // restore naming rule violation check
{
return new NativeList(Allocator.Temp);
}
internal string GenerateObserverErrorMessage(ClientRpcParams clientRpcParams, ulong targetClientId)
{
var containerNameHoldingId = clientRpcParams.Send.TargetClientIds != null ? nameof(ClientRpcParams.Send.TargetClientIds) : nameof(ClientRpcParams.Send.TargetClientIdsNativeArray);
return $"Sending ClientRpc to non-observer! {containerNameHoldingId} contains clientId {targetClientId} that is not an observer!";
}
///
/// Gets the NetworkManager that owns this NetworkBehaviour instance
/// See note around `NetworkObject` for how there is a chicken / egg problem when we are not initialized
///
public NetworkManager NetworkManager
{
get
{
if (NetworkObject?.NetworkManager != null)
{
return NetworkObject?.NetworkManager;
}
return NetworkManager.Singleton;
}
}
// This erroneously tries to simplify these method references but the docs do not pick it up correctly
// because they try to resolve it on the field rather than the class of the same name.
#pragma warning disable IDE0001
///
/// Provides access to the various targets at runtime, as well as
/// runtime-bound targets like ,
/// ,
/// ,
/// ,
/// , ,
/// ,
/// ,
/// , and
///
///
#pragma warning restore IDE0001
public RpcTarget RpcTarget => NetworkManager.RpcTarget;
///
/// If a NetworkObject is assigned, it will return whether or not this NetworkObject
/// is the local player object. If no NetworkObject is assigned it will always return false.
///
public bool IsLocalPlayer { get; private set; }
///
/// Gets if the object is owned by the local player or if the object is the local player object
///
public bool IsOwner { get; internal set; }
///
/// Gets if we are executing as server
///
public bool IsServer { get; private set; }
///
/// Gets if the server (local or remote) is a host - i.e., also a client
///
public bool ServerIsHost { get; private set; }
///
/// Gets if we are executing as client
///
public bool IsClient { get; private set; }
///
/// Gets if we are executing as Host, I.E Server and Client
///
public bool IsHost { get; private set; }
///
/// Gets Whether or not the object has a owner
///
public bool IsOwnedByServer { get; internal set; }
///
/// Used to determine if it is safe to access NetworkObject and NetworkManager from within a NetworkBehaviour component
/// Primarily useful when checking NetworkObject/NetworkManager properties within FixedUpate
///
public bool IsSpawned { get; internal set; }
internal bool IsBehaviourEditable()
{
// Only server can MODIFY. So allow modification if network is either not running or we are server
return !m_NetworkObject ||
m_NetworkObject.NetworkManager == null ||
m_NetworkObject.NetworkManager.IsListening == false ||
m_NetworkObject.NetworkManager.IsServer;
}
/// TODO: this needs an overhaul. It's expensive, it's ja little naive in how it looks for networkObject in
/// its parent and worst, it creates a puzzle if you are a NetworkBehaviour wanting to see if you're live or not
/// (e.g. editor code). All you want to do is find out if NetworkManager is null, but to do that you
/// need NetworkObject, but if you try and grab NetworkObject and NetworkManager isn't up you'll get
/// the warning below. This is why IsBehaviourEditable had to be created. Matt was going to re-do
/// how NetworkObject works but it was close to the release and too risky to change
///
/// Gets the NetworkObject that owns this NetworkBehaviour instance
///
public NetworkObject NetworkObject
{
get
{
try
{
if (m_NetworkObject == null)
{
m_NetworkObject = GetComponentInParent();
}
}
catch (Exception)
{
return null;
}
// ShutdownInProgress check:
// This prevents an edge case scenario where the NetworkManager is shutting down but user code
// in Update and/or in FixedUpdate could still be checking NetworkBehaviour.NetworkObject directly (i.e. does it exist?)
// or NetworkBehaviour.IsSpawned (i.e. to early exit if not spawned) which, in turn, could generate several Warning messages
// per spawned NetworkObject. Checking for ShutdownInProgress prevents these unnecessary LogWarning messages.
// We must check IsSpawned, otherwise a warning will be logged under certain valid conditions (see OnDestroy)
if (IsSpawned && m_NetworkObject == null && (NetworkManager.Singleton == null || !NetworkManager.Singleton.ShutdownInProgress))
{
if (NetworkLog.CurrentLogLevel <= LogLevel.Normal)
{
NetworkLog.LogWarning($"Could not get {nameof(NetworkObject)} for the {nameof(NetworkBehaviour)}. Are you missing a {nameof(NetworkObject)} component?");
}
}
return m_NetworkObject;
}
}
///
/// Gets whether or not this NetworkBehaviour instance has a NetworkObject owner.
///
public bool HasNetworkObject => NetworkObject != null;
private NetworkObject m_NetworkObject = null;
///
/// Gets the NetworkId of the NetworkObject that owns this NetworkBehaviour
///
public ulong NetworkObjectId { get; internal set; }
///
/// Gets NetworkId for this NetworkBehaviour from the owner NetworkObject
///
public ushort NetworkBehaviourId { get; internal set; }
///
/// Internally caches the Id of this behaviour in a NetworkObject. Makes look-up faster
///
internal ushort NetworkBehaviourIdCache = 0;
///
/// Returns a the NetworkBehaviour with a given BehaviourId for the current NetworkObject
///
/// The behaviourId to return
/// Returns NetworkBehaviour with given behaviourId
protected NetworkBehaviour GetNetworkBehaviour(ushort behaviourId)
{
return NetworkObject.GetNetworkBehaviourAtOrderIndex(behaviourId);
}
///
/// Gets the ClientId that owns the NetworkObject
///
public ulong OwnerClientId { get; internal set; }
///
/// Updates properties with network session related
/// dependencies such as a NetworkObject's spawned
/// state or NetworkManager's session state.
///
internal void UpdateNetworkProperties()
{
// Set NetworkObject dependent properties
if (NetworkObject != null)
{
// Set identification related properties
NetworkObjectId = NetworkObject.NetworkObjectId;
IsLocalPlayer = NetworkObject.IsLocalPlayer;
// This is "OK" because GetNetworkBehaviourOrderIndex uses the order of
// NetworkObject.ChildNetworkBehaviours which is set once when first
// accessed.
NetworkBehaviourId = NetworkObject.GetNetworkBehaviourOrderIndex(this);
// Set ownership related properties
IsOwnedByServer = NetworkObject.IsOwnedByServer;
IsOwner = NetworkObject.IsOwner;
OwnerClientId = NetworkObject.OwnerClientId;
// Set NetworkManager dependent properties
if (NetworkManager != null)
{
IsHost = NetworkManager.IsListening && NetworkManager.IsHost;
IsClient = NetworkManager.IsListening && NetworkManager.IsClient;
IsServer = NetworkManager.IsListening && NetworkManager.IsServer;
ServerIsHost = NetworkManager.IsListening && NetworkManager.ServerIsHost;
}
}
else // Shouldn't happen, but if so then set the properties to their default value;
{
OwnerClientId = NetworkObjectId = default;
IsOwnedByServer = IsOwner = IsHost = IsClient = IsServer = ServerIsHost = default;
NetworkBehaviourId = default;
}
}
///
/// Gets called when the gets spawned, message handlers are ready to be registered and the network is setup.
///
public virtual void OnNetworkSpawn() { }
///
/// Gets called when the gets despawned. Is called both on the server and clients.
///
public virtual void OnNetworkDespawn() { }
internal void InternalOnNetworkSpawn()
{
IsSpawned = true;
InitializeVariables();
UpdateNetworkProperties();
}
internal void VisibleOnNetworkSpawn()
{
try
{
OnNetworkSpawn();
}
catch (Exception e)
{
Debug.LogException(e);
}
InitializeVariables();
if (IsServer)
{
// Since we just spawned the object and since user code might have modified their NetworkVariable, esp.
// NetworkList, we need to mark the object as free of updates.
// This should happen for all objects on the machine triggering the spawn.
PostNetworkVariableWrite(true);
}
}
internal void InternalOnNetworkDespawn()
{
IsSpawned = false;
UpdateNetworkProperties();
try
{
OnNetworkDespawn();
}
catch (Exception e)
{
Debug.LogException(e);
}
}
///
/// Gets called when the local client gains ownership of this object
///
public virtual void OnGainedOwnership() { }
internal void InternalOnGainedOwnership()
{
UpdateNetworkProperties();
OnGainedOwnership();
}
///
/// Invoked on all clients, override this method to be notified of any
/// ownership changes (even if the instance was niether the previous or
/// newly assigned current owner).
///
/// the previous owner
/// the current owner
protected virtual void OnOwnershipChanged(ulong previous, ulong current)
{
}
internal void InternalOnOwnershipChanged(ulong previous, ulong current)
{
OnOwnershipChanged(previous, current);
}
///
/// Gets called when we loose ownership of this object
///
public virtual void OnLostOwnership() { }
internal void InternalOnLostOwnership()
{
UpdateNetworkProperties();
OnLostOwnership();
}
///
/// Gets called when the parent NetworkObject of this NetworkBehaviour's NetworkObject has changed
///
/// the new parent
public virtual void OnNetworkObjectParentChanged(NetworkObject parentNetworkObject) { }
private bool m_VarInit = false;
private readonly List> m_DeliveryMappedNetworkVariableIndices = new List>();
private readonly List m_DeliveryTypesForNetworkVariableGroups = new List();
// RuntimeAccessModifiersILPP will make this `protected`
internal readonly List NetworkVariableFields = new List();
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal virtual void __initializeVariables()
#pragma warning restore IDE1006 // restore naming rule violation check
{
// ILPP generates code for all NetworkBehaviour subtypes to initialize each type's network variables.
}
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal virtual void __initializeRpcs()
#pragma warning restore IDE1006 // restore naming rule violation check
{
// ILPP generates code for all NetworkBehaviour subtypes to initialize each type's RPCs.
}
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
internal void __registerRpc(uint hash, RpcReceiveHandler handler, string rpcMethodName)
#pragma warning restore IDE1006 // restore naming rule violation check
{
__rpc_func_table[GetType()][hash] = handler;
#if DEVELOPMENT_BUILD || UNITY_EDITOR
__rpc_name_table[GetType()][hash] = rpcMethodName;
#endif
}
#pragma warning disable IDE1006 // disable naming rule violation check
// RuntimeAccessModifiersILPP will make this `protected`
// Using this method here because ILPP doesn't seem to let us do visibility modification on properties.
internal void __nameNetworkVariable(NetworkVariableBase variable, string varName)
#pragma warning restore IDE1006 // restore naming rule violation check
{
variable.Name = varName;
}
internal void InitializeVariables()
{
if (m_VarInit)
{
return;
}
m_VarInit = true;
if (!__rpc_func_table.ContainsKey(GetType()))
{
__rpc_func_table[GetType()] = new Dictionary();
#if UNITY_EDITOR || DEVELOPMENT_BUILD
__rpc_name_table[GetType()] = new Dictionary();
#endif
__initializeRpcs();
}
__initializeVariables();
{
// Create index map for delivery types
var firstLevelIndex = new Dictionary();
int secondLevelCounter = 0;
for (int i = 0; i < NetworkVariableFields.Count; i++)
{
var networkDelivery = NetworkVariableBase.Delivery;
if (!firstLevelIndex.ContainsKey(networkDelivery))
{
firstLevelIndex.Add(networkDelivery, secondLevelCounter);
m_DeliveryTypesForNetworkVariableGroups.Add(networkDelivery);
secondLevelCounter++;
}
if (firstLevelIndex[networkDelivery] >= m_DeliveryMappedNetworkVariableIndices.Count)
{
m_DeliveryMappedNetworkVariableIndices.Add(new HashSet());
}
m_DeliveryMappedNetworkVariableIndices[firstLevelIndex[networkDelivery]].Add(i);
}
}
}
internal void PreNetworkVariableWrite()
{
// reset our "which variables got written" data
NetworkVariableIndexesToReset.Clear();
NetworkVariableIndexesToResetSet.Clear();
}
internal void PostNetworkVariableWrite(bool forced = false)
{
if (forced)
{
// Mark every variable as no longer dirty. We just spawned the object and whatever the game code did
// during OnNetworkSpawn has been sent and needs to be cleared
for (int i = 0; i < NetworkVariableFields.Count; i++)
{
NetworkVariableFields[i].ResetDirty();
}
}
else
{
// mark any variables we wrote as no longer dirty
for (int i = 0; i < NetworkVariableIndexesToReset.Count; i++)
{
NetworkVariableFields[NetworkVariableIndexesToReset[i]].ResetDirty();
}
}
MarkVariablesDirty(false);
}
internal void PreVariableUpdate()
{
if (!m_VarInit)
{
InitializeVariables();
}
PreNetworkVariableWrite();
}
internal void VariableUpdate(ulong targetClientId)
{
NetworkVariableUpdate(targetClientId, NetworkBehaviourId);
}
internal readonly List NetworkVariableIndexesToReset = new List();
internal readonly HashSet NetworkVariableIndexesToResetSet = new HashSet();
private void NetworkVariableUpdate(ulong targetClientId, int behaviourIndex)
{
if (!CouldHaveDirtyNetworkVariables())
{
return;
}
for (int j = 0; j < m_DeliveryMappedNetworkVariableIndices.Count; j++)
{
var shouldSend = false;
for (int k = 0; k < NetworkVariableFields.Count; k++)
{
var networkVariable = NetworkVariableFields[k];
if (networkVariable.IsDirty() && networkVariable.CanClientRead(targetClientId))
{
shouldSend = true;
break;
}
}
if (shouldSend)
{
var message = new NetworkVariableDeltaMessage
{
NetworkObjectId = NetworkObjectId,
NetworkBehaviourIndex = NetworkObject.GetNetworkBehaviourOrderIndex(this),
NetworkBehaviour = this,
TargetClientId = targetClientId,
DeliveryMappedNetworkVariableIndex = m_DeliveryMappedNetworkVariableIndices[j]
};
// TODO: Serialization is where the IsDirty flag gets changed.
// Messages don't get sent from the server to itself, so if we're host and sending to ourselves,
// we still have to actually serialize the message even though we're not sending it, otherwise
// the dirty flag doesn't change properly. These two pieces should be decoupled at some point
// so we don't have to do this serialization work if we're not going to use the result.
if (IsServer && targetClientId == NetworkManager.ServerClientId)
{
var tmpWriter = new FastBufferWriter(NetworkManager.MessageManager.NonFragmentedMessageMaxSize, Allocator.Temp, NetworkManager.MessageManager.FragmentedMessageMaxSize);
using (tmpWriter)
{
message.Serialize(tmpWriter, message.Version);
}
}
else
{
NetworkManager.ConnectionManager.SendMessage(ref message, m_DeliveryTypesForNetworkVariableGroups[j], targetClientId);
}
}
}
}
private bool CouldHaveDirtyNetworkVariables()
{
// TODO: There should be a better way by reading one dirty variable vs. 'n'
for (int i = 0; i < NetworkVariableFields.Count; i++)
{
if (NetworkVariableFields[i].IsDirty())
{
return true;
}
}
return false;
}
internal void MarkVariablesDirty(bool dirty)
{
for (int j = 0; j < NetworkVariableFields.Count; j++)
{
NetworkVariableFields[j].SetDirty(dirty);
}
}
///
/// Synchronizes by setting only the NetworkVariable field values that the client has permission to read.
/// Note: This is only invoked when first synchronizing a NetworkBehaviour (i.e. late join or spawned NetworkObject)
///
///
/// When NetworkConfig.EnsureNetworkVariableLengthSafety is enabled each NetworkVariable field will be preceded
/// by the number of bytes written for that specific field.
///
internal void WriteNetworkVariableData(FastBufferWriter writer, ulong targetClientId)
{
if (NetworkVariableFields.Count == 0)
{
return;
}
for (int j = 0; j < NetworkVariableFields.Count; j++)
{
if (NetworkVariableFields[j].CanClientRead(targetClientId))
{
if (NetworkManager.NetworkConfig.EnsureNetworkVariableLengthSafety)
{
var writePos = writer.Position;
// Note: This value can't be packed because we don't know how large it will be in advance
// we reserve space for it, then write the data, then come back and fill in the space
// to pack here, we'd have to write data to a temporary buffer and copy it in - which
// isn't worth possibly saving one byte if and only if the data is less than 63 bytes long...
// The way we do packing, any value > 63 in a ushort will use the full 2 bytes to represent.
writer.WriteValueSafe((ushort)0);
var startPos = writer.Position;
NetworkVariableFields[j].WriteField(writer);
var size = writer.Position - startPos;
writer.Seek(writePos);
writer.WriteValueSafe((ushort)size);
writer.Seek(startPos + size);
}
else
{
NetworkVariableFields[j].WriteField(writer);
}
}
else // Only if EnsureNetworkVariableLengthSafety, otherwise just skip
if (NetworkManager.NetworkConfig.EnsureNetworkVariableLengthSafety)
{
writer.WriteValueSafe((ushort)0);
}
}
}
///
/// Synchronizes by setting only the NetworkVariable field values that the client has permission to read.
/// Note: This is only invoked when first synchronizing a NetworkBehaviour (i.e. late join or spawned NetworkObject)
///
///
/// When NetworkConfig.EnsureNetworkVariableLengthSafety is enabled each NetworkVariable field will be preceded
/// by the number of bytes written for that specific field.
///
internal void SetNetworkVariableData(FastBufferReader reader, ulong clientId)
{
if (NetworkVariableFields.Count == 0)
{
return;
}
for (int j = 0; j < NetworkVariableFields.Count; j++)
{
var varSize = (ushort)0;
var readStartPos = 0;
if (NetworkManager.NetworkConfig.EnsureNetworkVariableLengthSafety)
{
reader.ReadValueSafe(out varSize);
if (varSize == 0)
{
continue;
}
readStartPos = reader.Position;
}
else // If the client cannot read this field, then skip it
if (!NetworkVariableFields[j].CanClientRead(clientId))
{
continue;
}
NetworkVariableFields[j].ReadField(reader);
if (NetworkManager.NetworkConfig.EnsureNetworkVariableLengthSafety)
{
if (reader.Position > (readStartPos + varSize))
{
if (NetworkLog.CurrentLogLevel <= LogLevel.Normal)
{
NetworkLog.LogWarning($"Var data read too far. {reader.Position - (readStartPos + varSize)} bytes.");
}
reader.Seek(readStartPos + varSize);
}
else if (reader.Position < (readStartPos + varSize))
{
if (NetworkLog.CurrentLogLevel <= LogLevel.Normal)
{
NetworkLog.LogWarning($"Var data read too little. {(readStartPos + varSize) - reader.Position} bytes.");
}
reader.Seek(readStartPos + varSize);
}
}
}
}
///
/// Gets the local instance of a object with a given NetworkId
///
///
///
protected NetworkObject GetNetworkObject(ulong networkId)
{
return NetworkManager.SpawnManager.SpawnedObjects.TryGetValue(networkId, out NetworkObject networkObject) ? networkObject : null;
}
///
/// Override this method if your derived NetworkBehaviour requires custom synchronization data.
/// Note: Use of this method is only for the initial client synchronization of NetworkBehaviours
/// and will increase the payload size for client synchronization and dynamically spawned
/// s.
///
///
/// When serializing (writing) this will be invoked during the client synchronization period and
/// when spawning new NetworkObjects.
/// When deserializing (reading), this will be invoked prior to the NetworkBehaviour's associated
/// NetworkObject being spawned.
///
/// The serializer to use to read and write the data.
///
/// Either BufferSerializerReader or BufferSerializerWriter, depending whether the serializer
/// is in read mode or write mode.
///
/// the relative client identifier being synchronized
protected virtual void OnSynchronize(ref BufferSerializer serializer) where T : IReaderWriter
{
}
///
/// The relative client identifier targeted for the serialization of this instance.
///
///
/// This value will be set prior to being invoked.
/// For writing (server-side), this is useful to know which client will receive the serialized data.
/// For reading (client-side), this will be the .
/// When synchronization of this instance is complete, this value will be reset to 0
///
protected ulong m_TargetIdBeingSynchronized { get; private set; }
///
/// Internal method that determines if a NetworkBehaviour has additional synchronization data to
/// be synchronized when first instantiated prior to its associated NetworkObject being spawned.
///
///
/// This includes try-catch blocks to recover from exceptions that might occur and continue to
/// synchronize any remaining NetworkBehaviours.
///
/// true if it wrote synchronization data and false if it did not
internal bool Synchronize(ref BufferSerializer serializer, ulong targetClientId = 0) where T : IReaderWriter
{
m_TargetIdBeingSynchronized = targetClientId;
if (serializer.IsWriter)
{
// Get the writer to handle seeking and determining how many bytes were written
var writer = serializer.GetFastBufferWriter();
// Save our position before we attempt to write anything so we can seek back to it (i.e. error occurs)
var positionBeforeWrite = writer.Position;
writer.WriteValueSafe(NetworkBehaviourId);
// Save our position where we will write the final size being written so we can skip over it in the
// event an exception occurs when deserializing.
var sizePosition = writer.Position;
writer.WriteValueSafe((ushort)0);
// Save our position before synchronizing to determine how much was written
var positionBeforeSynchronize = writer.Position;
var threwException = false;
try
{
OnSynchronize(ref serializer);
}
catch (Exception ex)
{
threwException = true;
if (NetworkManager.LogLevel <= LogLevel.Normal)
{
NetworkLog.LogWarning($"{name} threw an exception during synchronization serialization, this {nameof(NetworkBehaviour)} is being skipped and will not be synchronized!");
if (NetworkManager.LogLevel == LogLevel.Developer)
{
NetworkLog.LogError($"{ex.Message}\n {ex.StackTrace}");
}
}
}
var finalPosition = writer.Position;
// Reset before exiting
m_TargetIdBeingSynchronized = default;
// If we wrote nothing then skip writing anything for this NetworkBehaviour
if (finalPosition == positionBeforeSynchronize || threwException)
{
writer.Seek(positionBeforeWrite);
// Truncate back to the size before
writer.Truncate();
return false;
}
else
{
// Write the number of bytes serialized to handle exceptions on the deserialization side
var bytesWritten = finalPosition - positionBeforeSynchronize;
writer.Seek(sizePosition);
writer.WriteValueSafe((ushort)bytesWritten);
writer.Seek(finalPosition);
}
return true;
}
else
{
var reader = serializer.GetFastBufferReader();
// We will always read the expected byte count
reader.ReadValueSafe(out ushort expectedBytesToRead);
// Save our position before we begin synchronization deserialization
var positionBeforeSynchronize = reader.Position;
var synchronizationError = false;
try
{
// Invoke synchronization
OnSynchronize(ref serializer);
}
catch (Exception ex)
{
if (NetworkManager.LogLevel <= LogLevel.Normal)
{
NetworkLog.LogWarning($"{name} threw an exception during synchronization deserialization, this {nameof(NetworkBehaviour)} is being skipped and will not be synchronized!");
if (NetworkManager.LogLevel == LogLevel.Developer)
{
NetworkLog.LogError($"{ex.Message}\n {ex.StackTrace}");
}
}
synchronizationError = true;
}
var totalBytesRead = reader.Position - positionBeforeSynchronize;
if (totalBytesRead != expectedBytesToRead)
{
if (NetworkManager.LogLevel <= LogLevel.Normal)
{
NetworkLog.LogWarning($"{name} read {totalBytesRead} bytes but was expected to read {expectedBytesToRead} bytes during synchronization deserialization! This {nameof(NetworkBehaviour)} is being skipped and will not be synchronized!");
}
synchronizationError = true;
}
// Reset before exiting
m_TargetIdBeingSynchronized = default;
// Skip over the entry if deserialization fails
if (synchronizationError)
{
var skipToPosition = positionBeforeSynchronize + expectedBytesToRead;
reader.Seek(skipToPosition);
return false;
}
return true;
}
}
///
/// Invoked when the the is attached to.
/// NOTE: If you override this, you will want to always invoke this base class version of this
/// method!!
///
public virtual void OnDestroy()
{
if (NetworkObject != null && NetworkObject.IsSpawned && IsSpawned)
{
// If the associated NetworkObject is still spawned then this
// NetworkBehaviour will be removed from the NetworkObject's
// ChildNetworkBehaviours list.
NetworkObject.OnNetworkBehaviourDestroyed(this);
}
// this seems odd to do here, but in fact especially in tests we can find ourselves
// here without having called InitializedVariables, which causes problems if any
// of those variables use native containers (e.g. NetworkList) as they won't be
// registered here and therefore won't be cleaned up.
//
// we should study to understand the initialization patterns
if (!m_VarInit)
{
InitializeVariables();
}
for (int i = 0; i < NetworkVariableFields.Count; i++)
{
NetworkVariableFields[i].Dispose();
}
}
}
}