com.unity.netcode.gameobjects@1.0.0-pre.4

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [1.0.0-pre.4] - 2021-01-04

### Added

- Added `com.unity.modules.physics` and `com.unity.modules.physics2d` package dependencies (#1565)

### Removed

- Removed `com.unity.modules.ai` package dependency (#1565)
- Removed `FixedQueue`, `StreamExtensions`, `TypeExtensions` (#1398)

### Fixed
- Fixed in-scene NetworkObjects that are moved into the DDOL scene not getting restored to their original active state (enabled/disabled) after a full scene transition (#1354)
- Fixed invalid IL code being generated when using `this` instead of `this ref` for the FastBufferReader/FastBufferWriter parameter of an extension method. (#1393)
- Fixed an issue where if you are running as a server (not host) the LoadEventCompleted and UnloadEventCompleted events would fire early by the NetworkSceneManager (#1379)
- Fixed a runtime error when sending an array of an INetworkSerializable type that's implemented as a struct (#1402)
- NetworkConfig will no longer throw an OverflowException in GetConfig() when ForceSamePrefabs is enabled and the number of prefabs causes the config blob size to exceed 1300 bytes. (#1385)
- Fixed NetworkVariable not calling NetworkSerialize on INetworkSerializable types (#1383)
- Fixed NullReferenceException on ImportReferences call in NetworkBehaviourILPP (#1434)
- Fixed NetworkObjects not being despawned before they are destroyed during shutdown for client, host, and server instances. (#1390)
- Fixed KeyNotFound exception when removing ownership of a newly spawned NetworkObject that is already owned by the server. (#1500)
- Fixed NetworkManager.LocalClient not being set when starting as a host. (#1511)
- Fixed a few memory leak cases when shutting down NetworkManager during Incoming Message Queue processing. (#1323)

### Changed
- The SDK no longer limits message size to 64k. (The transport may still impose its own limits, but the SDK no longer does.) (#1384)
- Updated com.unity.collections to 1.1.0 (#1451)
This commit is contained in:
Unity Technologies
2021-01-04 00:00:00 +00:00
parent f5664b4cc1
commit 36d07fad5e
59 changed files with 1585 additions and 681 deletions

View File

@@ -0,0 +1,93 @@
using System;
namespace Unity.Netcode
{
internal class ConnectionRtt
{
private double[] m_RttSendTimes; // times at which packet were sent for RTT computations
private int[] m_SendSequence; // tick, or other key, at which packets were sent (to allow matching)
private double[] m_MeasuredLatencies; // measured latencies (ring buffer)
private int m_LatenciesBegin = 0; // ring buffer begin
private int m_LatenciesEnd = 0; // ring buffer end
/// <summary>
/// Round-trip-time data
/// </summary>
public struct Rtt
{
public double BestSec; // best RTT
public double AverageSec; // average RTT
public double WorstSec; // worst RTT
public double LastSec; // latest ack'ed RTT
public int SampleCount; // number of contributing samples
}
public ConnectionRtt()
{
m_RttSendTimes = new double[NetworkConfig.RttWindowSize];
m_SendSequence = new int[NetworkConfig.RttWindowSize];
m_MeasuredLatencies = new double[NetworkConfig.RttWindowSize];
}
/// <summary>
/// Returns the Round-trip-time computation for this client
/// </summary>
public Rtt GetRtt()
{
var ret = new Rtt();
var index = m_LatenciesBegin;
double total = 0.0;
ret.BestSec = m_MeasuredLatencies[m_LatenciesBegin];
ret.WorstSec = m_MeasuredLatencies[m_LatenciesBegin];
while (index != m_LatenciesEnd)
{
total += m_MeasuredLatencies[index];
ret.SampleCount++;
ret.BestSec = Math.Min(ret.BestSec, m_MeasuredLatencies[index]);
ret.WorstSec = Math.Max(ret.WorstSec, m_MeasuredLatencies[index]);
index = (index + 1) % NetworkConfig.RttAverageSamples;
}
if (ret.SampleCount != 0)
{
ret.AverageSec = total / ret.SampleCount;
// the latest RTT is one before m_LatenciesEnd
ret.LastSec = m_MeasuredLatencies[(m_LatenciesEnd + (NetworkConfig.RttWindowSize - 1)) % NetworkConfig.RttWindowSize];
}
else
{
ret.AverageSec = 0;
ret.BestSec = 0;
ret.WorstSec = 0;
ret.SampleCount = 0;
ret.LastSec = 0;
}
return ret;
}
internal void NotifySend(int sequence, double timeSec)
{
m_RttSendTimes[sequence % NetworkConfig.RttWindowSize] = timeSec;
m_SendSequence[sequence % NetworkConfig.RttWindowSize] = sequence;
}
internal void NotifyAck(int sequence, double timeSec)
{
// if the same slot was not used by a later send
if (m_SendSequence[sequence % NetworkConfig.RttWindowSize] == sequence)
{
double latency = timeSec - m_RttSendTimes[sequence % NetworkConfig.RttWindowSize];
m_MeasuredLatencies[m_LatenciesEnd] = latency;
m_LatenciesEnd = (m_LatenciesEnd + 1) % NetworkConfig.RttAverageSamples;
if (m_LatenciesEnd == m_LatenciesBegin)
{
m_LatenciesBegin = (m_LatenciesBegin + 1) % NetworkConfig.RttAverageSamples;
}
}
}
}
}