com.unity.netcode.gameobjects@1.0.0-pre.2

# Changelog

All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [1.0.0-pre.2] - 2020-12-20

### Added

- Associated Known Issues for the 1.0.0-pre.1 release in the changelog

### Changed

- Updated label for `1.0.0-pre.1` changelog section

## [1.0.0-pre.1] - 2020-12-20

### Added

- Added `ClientNetworkTransform` sample to the SDK package (#1168)
- Added `Bootstrap` sample to the SDK package (#1140)
- Enhanced `NetworkSceneManager` implementation with additive scene loading capabilities (#1080, #955, #913)
  - `NetworkSceneManager.OnSceneEvent` provides improved scene event notificaitons
- Enhanced `NetworkTransform` implementation with per axis/component based and threshold based state replication (#1042, #1055, #1061, #1084, #1101)
- Added a jitter-resistent `BufferedLinearInterpolator<T>` for `NetworkTransform` (#1060)
- Implemented `NetworkPrefabHandler` that provides support for object pooling and `NetworkPrefab` overrides (#1073, #1004, #977, #905,#749, #727)
- Implemented auto `NetworkObject` transform parent synchronization at runtime over the network (#855)
- Adopted Unity C# Coding Standards in the codebase with `.editorconfig` ruleset (#666, #670)
- When a client tries to spawn a `NetworkObject` an exception is thrown to indicate unsupported behavior. (#981)
- Added a `NetworkTime` and `NetworkTickSystem` which allows for improved control over time and ticks. (#845)
- Added a `OnNetworkDespawn` function to `NetworkObject` which gets called when a `NetworkObject` gets despawned and can be overriden. (#865)
- Added `SnapshotSystem` that would allow variables and spawn/despawn messages to be sent in blocks (#805, #852, #862, #963, #1012, #1013, #1021, #1040, #1062, #1064, #1083, #1091, #1111, #1129, #1166, #1192)
  - Disabled by default for now, except spawn/despawn messages
  - Will leverage unreliable messages with eventual consistency
- `NetworkBehaviour` and `NetworkObject`'s `NetworkManager` instances can now be overriden (#762)
- Added metrics reporting for the new network profiler if the Multiplayer Tools package is present (#1104, #1089, #1096, #1086, #1072, #1058, #960, #897, #891, #878)
- `NetworkBehaviour.IsSpawned` a quick (and stable) way to determine if the associated NetworkObject is spawned (#1190)
- Added `NetworkRigidbody` and `NetworkRigidbody2D` components to support networking `Rigidbody` and `Rigidbody2D` components (#1202, #1175)
- Added `NetworkObjectReference` and `NetworkBehaviourReference` structs which allow to sending `NetworkObject/Behaviours` over RPCs/`NetworkVariable`s (#1173)
- Added `NetworkAnimator` component to support networking `Animator` component (#1281, #872)

### Changed

- Bumped minimum Unity version, renamed package as "Unity Netcode for GameObjects", replaced `MLAPI` namespace and its variants with `Unity.Netcode` namespace and per asm-def variants (#1007, #1009, #1015, #1017, #1019, #1025, #1026, #1065)
  - Minimum Unity version:
    - 2019.4 → 2020.3+
  - Package rename:
    - Display name: `MLAPI Networking Library` → `Netcode for GameObjects`
    - Name: `com.unity.multiplayer.mlapi` → `com.unity.netcode.gameobjects`
    - Updated package description
  - All `MLAPI.x` namespaces are replaced with `Unity.Netcode`
    - `MLAPI.Messaging` → `Unity.Netcode`
    - `MLAPI.Connection` → `Unity.Netcode`
    - `MLAPI.Logging` → `Unity.Netcode`
    - `MLAPI.SceneManagement` → `Unity.Netcode`
    - and other `MLAPI.x` variants to `Unity.Netcode`
  - All assembly definitions are renamed with `Unity.Netcode.x` variants
    - `Unity.Multiplayer.MLAPI.Runtime` → `Unity.Netcode.Runtime`
    - `Unity.Multiplayer.MLAPI.Editor` → `Unity.Netcode.Editor`
    - and other `Unity.Multiplayer.MLAPI.x` variants to `Unity.Netcode.x` variants
- Renamed `Prototyping` namespace and assembly definition to `Components` (#1145)
- Changed `NetworkObject.Despawn(bool destroy)` API to default to `destroy = true` for better usability (#1217)
- Scene registration in `NetworkManager` is now replaced by Build Setttings → Scenes in Build List (#1080)
- `NetworkSceneManager.SwitchScene` has been replaced by `NetworkSceneManager.LoadScene` (#955)
- `NetworkManager, NetworkConfig, and NetworkSceneManager` scene registration replaced with scenes in build list (#1080)
- `GlobalObjectIdHash` replaced `PrefabHash` and `PrefabHashGenerator` for stability and consistency (#698)
- `NetworkStart` has been renamed to `OnNetworkSpawn`. (#865)
- Network variable cleanup - eliminated shared mode, variables are server-authoritative (#1059, #1074)
- `NetworkManager` and other systems are no longer singletons/statics (#696, #705, #706, #737, #738, #739, #746, #747, #763, #765, #766, #783, #784, #785, #786, #787, #788)
- Changed `INetworkSerializable.NetworkSerialize` method signature to use `BufferSerializer<T>` instead of `NetworkSerializer` (#1187)
- Changed `CustomMessagingManager`'s methods to use `FastBufferWriter` and `FastBufferReader` instead of `Stream` (#1187)
- Reduced internal runtime allocations by removing LINQ calls and replacing managed lists/arrays with native collections (#1196)

### Removed

- Removed `NetworkNavMeshAgent` (#1150)
- Removed `NetworkDictionary`, `NetworkSet` (#1149)
- Removed `NetworkVariableSettings` (#1097)
- Removed predefined `NetworkVariable<T>` types (#1093)
    - Removed `NetworkVariableBool`, `NetworkVariableByte`, `NetworkVariableSByte`, `NetworkVariableUShort`, `NetworkVariableShort`, `NetworkVariableUInt`, `NetworkVariableInt`, `NetworkVariableULong`, `NetworkVariableLong`, `NetworkVariableFloat`, `NetworkVariableDouble`, `NetworkVariableVector2`, `NetworkVariableVector3`, `NetworkVariableVector4`, `NetworkVariableColor`, `NetworkVariableColor32`, `NetworkVariableRay`, `NetworkVariableQuaternion`
- Removed `NetworkChannel` and `MultiplexTransportAdapter` (#1133)
- Removed ILPP backend for 2019.4, minimum required version is 2020.3+ (#895)
- `NetworkManager.NetworkConfig` had the following properties removed: (#1080)
  - Scene Registrations no longer exists
  - Allow Runtime Scene Changes was no longer needed and was removed
- Removed the NetworkObject.Spawn payload parameter (#1005)
- Removed `ProfilerCounter`, the original MLAPI network profiler, and the built-in network profiler module (2020.3). A replacement can now be found in the Multiplayer Tools package. (#1048)
- Removed UNet RelayTransport and related relay functionality in UNetTransport (#1081)
- Removed `UpdateStage` parameter from `ServerRpcSendParams` and `ClientRpcSendParams` (#1187)
- Removed `NetworkBuffer`, `NetworkWriter`, `NetworkReader`, `NetworkSerializer`, `PooledNetworkBuffer`, `PooledNetworkWriter`, and `PooledNetworkReader` (#1187)
- Removed `EnableNetworkVariable` in `NetworkConfig`, it is always enabled now (#1179)
- Removed `NetworkTransform`'s FixedSendsPerSecond, AssumeSyncedSends, InterpolateServer, ExtrapolatePosition, MaxSendsToExtrapolate, Channel, EnableNonProvokedResendChecks, DistanceSendrate (#1060) (#826) (#1042, #1055, #1061, #1084, #1101)
- Removed `NetworkManager`'s `StopServer()`, `StopClient()` and `StopHost()` methods and replaced with single `NetworkManager.Shutdown()` method for all (#1108)

### Fixed

- Fixed ServerRpc ownership check to `Debug.LogError` instead of `Debug.LogWarning` (#1126)
- Fixed `NetworkObject.OwnerClientId` property changing before `NetworkBehaviour.OnGainedOwnership()` callback (#1092)
- Fixed `NetworkBehaviourILPP` to iterate over all types in an assembly (#803)
- Fixed cross-asmdef RPC ILPP by importing types into external assemblies (#678)
- Fixed `NetworkManager` shutdown when quitting the application or switching scenes (#1011)
  - Now `NetworkManager` shutdowns correctly and despawns existing `NetworkObject`s
- Fixed Only one `PlayerPrefab` can be selected on `NetworkManager` inspector UI in the editor (#676)
- Fixed connection approval not being triggered for host (#675)
- Fixed various situations where messages could be processed in an invalid order, resulting in errors (#948, #1187, #1218)
- Fixed `NetworkVariable`s being default-initialized on the client instead of being initialized with the desired value (#1266)
- Improved runtime performance and reduced GC pressure (#1187)
- Fixed #915 - clients are receiving data from objects not visible to them (#1099)
- Fixed `NetworkTransform`'s "late join" issues, `NetworkTransform` now uses `NetworkVariable`s instead of RPCs (#826)
- Throw an exception for silent failure when a client tries to get another player's `PlayerObject`, it is now only allowed on the server-side (#844)

### Known Issues

- `NetworkVariable` does not serialize `INetworkSerializable` types through their `NetworkSerialize` implementation
- `NetworkObjects` marked as `DontDestroyOnLoad` are disabled during some network scene transitions
- `NetworkTransform` interpolates from the origin when switching Local Space synchronization
- Exceptions thrown in `OnNetworkSpawn` user code for an object will prevent the callback in other objects
- Cannot send an array of `INetworkSerializable` in RPCs
- ILPP generation fails with special characters in project path

## [0.2.0] - 2021-06-03

WIP version increment to pass package validation checks. Changelog & final version number TBD.

## [0.1.1] - 2021-06-01

This is hotfix v0.1.1 for the initial experimental Unity MLAPI Package.

### Changed

- Fixed issue with the Unity Registry package version missing some fixes from the v0.1.0 release.

## [0.1.0] - 2021-03-23

This is the initial experimental Unity MLAPI Package, v0.1.0.

### Added

- Refactored a new standard for Remote Procedure Call (RPC) in MLAPI which provides increased performance, significantly reduced boilerplate code, and extensibility for future-proofed code. MLAPI RPC includes `ServerRpc` and `ClientRpc` to execute logic on the server and client-side. This provides a single performant unified RPC solution, replacing MLAPI Convenience and Performance RPC (see [here](#removed-features)).
- Added standarized serialization types, including built-in and custom serialization flows. See [RFC #2](https://github.com/Unity-Technologies/com.unity.multiplayer.rfcs/blob/master/text/0002-serializable-types.md) for details.
- `INetworkSerializable` interface replaces `IBitWritable`.
- Added `NetworkSerializer`..., which is the main aggregator that implements serialization code for built-in supported types and holds `NetworkReader` and `NetworkWriter` instances internally.
- Added a Network Update Loop infrastructure that aids Netcode systems to update (such as RPC queue and transport) outside of the standard `MonoBehaviour` event cycle. See [RFC #8](https://github.com/Unity-Technologies/com.unity.multiplayer.rfcs/blob/master/text/0008-network-update-loop.md) and the following details:
  - It uses Unity's [low-level Player Loop API](https://docs.unity3d.com/ScriptReference/LowLevel.PlayerLoop.html) and allows for registering `INetworkUpdateSystem`s with `NetworkUpdate` methods to be executed at specific `NetworkUpdateStage`s, which may also be before or after `MonoBehaviour`-driven game logic execution.
  - You will typically interact with `NetworkUpdateLoop` for registration and `INetworkUpdateSystem` for implementation.
  - `NetworkVariable`s are now tick-based using the `NetworkTickSystem`, tracking time through network interactions and syncs.
- Added message batching to handle consecutive RPC requests sent to the same client. `RpcBatcher` sends batches based on requests from the `RpcQueueProcessing`, by batch size threshold or immediately.
- [GitHub 494](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/494): Added a constraint to allow one `NetworkObject` per `GameObject`, set through the `DisallowMultipleComponent` attribute.
- Integrated MLAPI with the Unity Profiler for versions 2020.2 and later:
  - Added new profiler modules for MLAPI that report important network data.
  - Attached the profiler to a remote player to view network data over the wire.
- A test project is available for building and experimenting with MLAPI features. This project is available in the MLAPI GitHub [testproject folder](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/tree/release/0.1.0/testproject).
- Added a [MLAPI Community Contributions](https://github.com/Unity-Technologies/mlapi-community-contributions/tree/master/com.mlapi.contrib.extensions) new GitHub repository to accept extensions from the MLAPI community. Current extensions include moved MLAPI features for lag compensation (useful for Server Authoritative actions) and `TrackedObject`.

### Changed

- [GitHub 520](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/520): MLAPI now uses the Unity Package Manager for installation management.
- Added functionality and usability to `NetworkVariable`, previously called `NetworkVar`. Updates enhance options and fully replace the need for `SyncedVar`s.
- [GitHub 507](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/507): Reimplemented `NetworkAnimator`, which synchronizes animation states for networked objects.
- GitHub [444](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/444) and [455](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/455): Channels are now represented as bytes instead of strings.

For users of previous versions of MLAPI, this release renames APIs due to refactoring. All obsolete marked APIs have been removed as per [GitHub 513](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/513) and [GitHub 514](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/514).

| Previous MLAPI Versions | V 0.1.0 Name |
| -- | -- |
| `NetworkingManager` | `NetworkManager` |
| `NetworkedObject` | `NetworkObject` |
| `NetworkedBehaviour` | `NetworkBehaviour` |
| `NetworkedClient` | `NetworkClient` |
| `NetworkedPrefab` | `NetworkPrefab` |
| `NetworkedVar` | `NetworkVariable` |
| `NetworkedTransform` | `NetworkTransform` |
| `NetworkedAnimator` | `NetworkAnimator` |
| `NetworkedAnimatorEditor` | `NetworkAnimatorEditor` |
| `NetworkedNavMeshAgent` | `NetworkNavMeshAgent` |
| `SpawnManager` | `NetworkSpawnManager` |
| `BitStream` | `NetworkBuffer` |
| `BitReader` | `NetworkReader` |
| `BitWriter` | `NetworkWriter` |
| `NetEventType` | `NetworkEventType` |
| `ChannelType` | `NetworkDelivery` |
| `Channel` | `NetworkChannel` |
| `Transport` | `NetworkTransport` |
| `NetworkedDictionary` | `NetworkDictionary` |
| `NetworkedList` | `NetworkList` |
| `NetworkedSet` | `NetworkSet` |
| `MLAPIConstants` | `NetworkConstants` |
| `UnetTransport` | `UNetTransport` |

### Fixed

- [GitHub 460](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/460): Fixed an issue for RPC where the host-server was not receiving RPCs from the host-client and vice versa without the loopback flag set in `NetworkingManager`.
- Fixed an issue where data in the Profiler was incorrectly aggregated and drawn, which caused the profiler data to increment indefinitely instead of resetting each frame.
- Fixed an issue the client soft-synced causing PlayMode client-only scene transition issues, caused when running the client in the editor and the host as a release build. Users may have encountered a soft sync of `NetworkedInstanceId` issues in the `SpawnManager.ClientCollectSoftSyncSceneObjectSweep` method.
- [GitHub 458](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/458): Fixed serialization issues in `NetworkList` and `NetworkDictionary` when running in Server mode.
- [GitHub 498](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/498): Fixed numerical precision issues to prevent not a number (NaN) quaternions.
- [GitHub 438](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/438): Fixed booleans by reaching or writing bytes instead of bits.
- [GitHub 519](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/519): Fixed an issue where calling `Shutdown()` before making `NetworkManager.Singleton = null` is null on `NetworkManager.OnDestroy()`.

### Removed

With a new release of MLAPI in Unity, some features have been removed:

- SyncVars have been removed from MLAPI. Use `NetworkVariable`s in place of this functionality. <!-- MTT54 -->
- [GitHub 527](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/527): Lag compensation systems and `TrackedObject` have moved to the new [MLAPI Community Contributions](https://github.com/Unity-Technologies/mlapi-community-contributions/tree/master/com.mlapi.contrib.extensions) repo.
- [GitHub 509](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/509): Encryption has been removed from MLAPI. The `Encryption` option in `NetworkConfig` on the `NetworkingManager` is not available in this release. This change will not block game creation or running. A current replacement for this functionality is not available, and may be developed in future releases. See the following changes:
    - Removed `SecuritySendFlags` from all APIs.
    - Removed encryption, cryptography, and certificate configurations from APIs including `NetworkManager` and `NetworkConfig`.
    - Removed "hail handshake", including `NetworkManager` implementation and `NetworkConstants` entries.
    - Modified `RpcQueue` and `RpcBatcher` internals to remove encryption and authentication from reading and writing.
- Removed the previous MLAPI Profiler editor window from Unity versions 2020.2 and later.
- Removed previous MLAPI Convenience and Performance RPC APIs with the new standard RPC API. See [RFC #1](https://github.com/Unity-Technologies/com.unity.multiplayer.rfcs/blob/master/text/0001-std-rpc-api.md) for details.
- [GitHub 520](https://github.com/Unity-Technologies/com.unity.multiplayer.mlapi/pull/520): Removed the MLAPI Installer.

### Known Issues

- `NetworkNavMeshAgent` does not synchronize mesh data, Agent Size, Steering, Obstacle Avoidance, or Path Finding settings. It only synchronizes the destination and velocity, not the path to the destination.
- For `RPC`, methods with a `ClientRpc` or `ServerRpc` suffix which are not marked with [ServerRpc] or [ClientRpc] will cause a compiler error.
- For `NetworkAnimator`, Animator Overrides are not supported. Triggers do not work.
- For `NetworkVariable`, the `NetworkDictionary` `List` and `Set` must use the `reliableSequenced` channel.
- `NetworkObjects`s are supported but when spawning a prefab with nested child network objects you have to manually call spawn on them
- `NetworkTransform` have the following issues:
  - Replicated objects may have jitter.
  - The owner is always authoritative about the object's position.
  - Scale is not synchronized.
- Connection Approval is not called on the host client.
- For `NamedMessages`, always use `NetworkBuffer` as the underlying stream for sending named and unnamed messages.
- For `NetworkManager`, connection management is limited. Use `IsServer`, `IsClient`, `IsConnectedClient`, or other code to check if MLAPI connected correctly.

## [0.0.1-preview.1] - 2020-12-20

This was an internally-only-used version of the Unity MLAPI Package
This commit is contained in:
Unity Technologies
2020-12-20 00:00:00 +00:00
commit 22d877d1b2
489 changed files with 43246 additions and 0 deletions

View File

@@ -0,0 +1,505 @@
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using NUnit.Framework;
using UnityEngine;
using UnityEngine.SceneManagement;
using Object = UnityEngine.Object;
namespace Unity.Netcode.RuntimeTests
{
/// <summary>
/// Provides helpers for running multi instance tests.
/// </summary>
public static class MultiInstanceHelpers
{
public const int DefaultMinFrames = 1;
public const int DefaultMaxFrames = 64;
private static List<NetworkManager> s_NetworkManagerInstances = new List<NetworkManager>();
private static bool s_IsStarted;
private static int s_ClientCount;
private static int s_OriginalTargetFrameRate = -1;
public static List<NetworkManager> NetworkManagerInstances => s_NetworkManagerInstances;
/// <summary>
/// Creates NetworkingManagers and configures them for use in a multi instance setting.
/// </summary>
/// <param name="clientCount">The amount of clients</param>
/// <param name="server">The server NetworkManager</param>
/// <param name="clients">The clients NetworkManagers</param>
/// <param name="targetFrameRate">The targetFrameRate of the Unity engine to use while the multi instance helper is running. Will be reset on shutdown.</param>
public static bool Create(int clientCount, out NetworkManager server, out NetworkManager[] clients, int targetFrameRate = 60)
{
s_NetworkManagerInstances = new List<NetworkManager>();
CreateNewClients(clientCount, out clients);
// Create gameObject
var go = new GameObject("NetworkManager - Server");
// Create networkManager component
server = go.AddComponent<NetworkManager>();
NetworkManagerInstances.Insert(0, server);
// Set the NetworkConfig
server.NetworkConfig = new NetworkConfig()
{
// Set transport
NetworkTransport = go.AddComponent<SIPTransport>()
};
s_OriginalTargetFrameRate = Application.targetFrameRate;
Application.targetFrameRate = targetFrameRate;
return true;
}
/// <summary>
/// Used to add a client to the already existing list of clients
/// </summary>
/// <param name="clientCount">The amount of clients</param>
/// <param name="clients"></param>
/// <returns></returns>
public static bool CreateNewClients(int clientCount, out NetworkManager[] clients)
{
clients = new NetworkManager[clientCount];
var activeSceneName = SceneManager.GetActiveScene().name;
for (int i = 0; i < clientCount; i++)
{
// Create gameObject
var go = new GameObject("NetworkManager - Client - " + i);
// Create networkManager component
clients[i] = go.AddComponent<NetworkManager>();
// Set the NetworkConfig
clients[i].NetworkConfig = new NetworkConfig()
{
// Set transport
NetworkTransport = go.AddComponent<SIPTransport>()
};
}
NetworkManagerInstances.AddRange(clients);
return true;
}
/// <summary>
/// Stops one single client and makes sure to cleanup any static variables in this helper
/// </summary>
/// <param name="clientToStop"></param>
public static void StopOneClient(NetworkManager clientToStop)
{
clientToStop.Shutdown();
Object.Destroy(clientToStop.gameObject);
NetworkManagerInstances.Remove(clientToStop);
}
/// <summary>
/// Should always be invoked when finished with a single unit test
/// (i.e. during TearDown)
/// </summary>
public static void Destroy()
{
if (s_IsStarted == false)
{
return;
}
s_IsStarted = false;
// Shutdown the server which forces clients to disconnect
foreach (var networkManager in NetworkManagerInstances)
{
networkManager.Shutdown();
}
// Destroy the network manager instances
foreach (var networkManager in NetworkManagerInstances)
{
Object.DestroyImmediate(networkManager.gameObject);
}
NetworkManagerInstances.Clear();
// Destroy the temporary GameObject used to run co-routines
if (s_CoroutineRunner != null)
{
s_CoroutineRunner.StopAllCoroutines();
Object.DestroyImmediate(s_CoroutineRunner);
}
Application.targetFrameRate = s_OriginalTargetFrameRate;
}
/// <summary>
/// Starts NetworkManager instances created by the Create method.
/// </summary>
/// <param name="host">Whether or not to create a Host instead of Server</param>
/// <param name="server">The Server NetworkManager</param>
/// <param name="clients">The Clients NetworkManager</param>
/// <param name="startInitializationCallback">called immediately after server and client(s) are started</param>
/// <returns></returns>
public static bool Start(bool host, NetworkManager server, NetworkManager[] clients, Action<NetworkManager> startInitializationCallback = null)
{
if (s_IsStarted)
{
throw new InvalidOperationException("MultiInstanceHelper already started. Did you forget to Destroy?");
}
s_IsStarted = true;
s_ClientCount = clients.Length;
if (host)
{
server.StartHost();
}
else
{
server.StartServer();
}
// if set, then invoke this for the server
startInitializationCallback?.Invoke(server);
for (int i = 0; i < clients.Length; i++)
{
clients[i].StartClient();
// if set, then invoke this for the client
startInitializationCallback?.Invoke(clients[i]);
}
return true;
}
// Empty MonoBehaviour that is a holder of coroutine
private class CoroutineRunner : MonoBehaviour
{
}
private static CoroutineRunner s_CoroutineRunner;
/// <summary>
/// Runs a IEnumerator as a Coroutine on a dummy GameObject. Used to get exceptions coming from the coroutine
/// </summary>
/// <param name="enumerator">The IEnumerator to run</param>
public static Coroutine Run(IEnumerator enumerator)
{
if (s_CoroutineRunner == null)
{
s_CoroutineRunner = new GameObject(nameof(CoroutineRunner)).AddComponent<CoroutineRunner>();
}
return s_CoroutineRunner.StartCoroutine(enumerator);
}
public class CoroutineResultWrapper<T>
{
public T Result;
}
private static uint s_AutoIncrementGlobalObjectIdHashCounter = 111111;
/// <summary>
/// Normally we would only allow player prefabs to be set to a prefab. Not runtime created objects.
/// In order to prevent having a Resource folder full of a TON of prefabs that we have to maintain,
/// MultiInstanceHelper has a helper function that lets you mark a runtime created object to be
/// treated as a prefab by the Netcode. That's how we can get away with creating the player prefab
/// at runtime without it being treated as a SceneObject or causing other conflicts with the Netcode.
/// </summary>
/// <param name="networkObject">The networkObject to be treated as Prefab</param>
/// <param name="globalObjectIdHash">The GlobalObjectId to force</param>
public static void MakeNetworkObjectTestPrefab(NetworkObject networkObject, uint globalObjectIdHash = default)
{
// Override `GlobalObjectIdHash` if `globalObjectIdHash` param is set
if (globalObjectIdHash != default)
{
networkObject.GlobalObjectIdHash = globalObjectIdHash;
}
// Fallback to auto-increment if `GlobalObjectIdHash` was never set
if (networkObject.GlobalObjectIdHash == default)
{
networkObject.GlobalObjectIdHash = ++s_AutoIncrementGlobalObjectIdHashCounter;
}
// Prevent object from being snapped up as a scene object
networkObject.IsSceneObject = false;
}
// We use GameObject instead of SceneObject to be able to keep hierarchy
public static void MarkAsSceneObjectRoot(GameObject networkObjectRoot, NetworkManager server, NetworkManager[] clients)
{
networkObjectRoot.name += " - Server";
NetworkObject[] serverNetworkObjects = networkObjectRoot.GetComponentsInChildren<NetworkObject>();
for (int i = 0; i < serverNetworkObjects.Length; i++)
{
serverNetworkObjects[i].NetworkManagerOwner = server;
}
for (int i = 0; i < clients.Length; i++)
{
GameObject root = Object.Instantiate(networkObjectRoot);
root.name += " - Client - " + i;
NetworkObject[] clientNetworkObjects = root.GetComponentsInChildren<NetworkObject>();
for (int j = 0; j < clientNetworkObjects.Length; j++)
{
clientNetworkObjects[j].NetworkManagerOwner = clients[i];
}
}
}
/// <summary>
/// Waits on the client side to be connected.
/// </summary>
/// <param name="client">The client</param>
/// <param name="result">The result. If null, it will automatically assert</param>
/// <param name="maxFrames">The max frames to wait for</param>
public static IEnumerator WaitForClientConnected(NetworkManager client, CoroutineResultWrapper<bool> result = null, int maxFrames = DefaultMaxFrames)
{
yield return WaitForClientsConnected(new NetworkManager[] { client }, result, maxFrames);
}
/// <summary>
/// Similar to WaitForClientConnected, this waits for multiple clients to be connected.
/// </summary>
/// <param name="clients">The clients to be connected</param>
/// <param name="result">The result. If null, it will automatically assert<</param>
/// <param name="maxFrames">The max frames to wait for</param>
/// <returns></returns>
public static IEnumerator WaitForClientsConnected(NetworkManager[] clients, CoroutineResultWrapper<bool> result = null, int maxFrames = DefaultMaxFrames)
{
// Make sure none are the host client
foreach (var client in clients)
{
if (client.IsServer)
{
throw new InvalidOperationException("Cannot wait for connected as server");
}
}
var startFrameNumber = Time.frameCount;
var allConnected = true;
while (Time.frameCount - startFrameNumber <= maxFrames)
{
allConnected = true;
foreach (var client in clients)
{
if (!client.IsConnectedClient)
{
allConnected = false;
break;
}
}
if (allConnected)
{
break;
}
var nextFrameNumber = Time.frameCount + 1;
yield return new WaitUntil(() => Time.frameCount >= nextFrameNumber);
}
if (result != null)
{
result.Result = allConnected;
}
else
{
for (var i = 0; i < clients.Length; ++i)
{
var client = clients[i];
// Logging i+1 because that's the local client ID they'll get (0 is server)
// Can't use client.LocalClientId because that doesn't get assigned until IsConnectedClient == true,
Assert.True(client.IsConnectedClient, $"Client {i + 1} never connected");
}
}
}
/// <summary>
/// Waits on the server side for 1 client to be connected
/// </summary>
/// <param name="server">The server</param>
/// <param name="result">The result. If null, it will automatically assert</param>
/// <param name="maxFrames">The max frames to wait for</param>
public static IEnumerator WaitForClientConnectedToServer(NetworkManager server, CoroutineResultWrapper<bool> result = null, int maxFrames = DefaultMaxFrames)
{
yield return WaitForClientsConnectedToServer(server, server.IsHost ? s_ClientCount + 1 : s_ClientCount, result, maxFrames);
}
/// <summary>
/// Waits on the server side for 1 client to be connected
/// </summary>
/// <param name="server">The server</param>
/// <param name="result">The result. If null, it will automatically assert</param>
/// <param name="maxFrames">The max frames to wait for</param>
public static IEnumerator WaitForClientsConnectedToServer(NetworkManager server, int clientCount = 1, CoroutineResultWrapper<bool> result = null, int maxFrames = DefaultMaxFrames)
{
if (!server.IsServer)
{
throw new InvalidOperationException("Cannot wait for connected as client");
}
var startFrameNumber = Time.frameCount;
while (Time.frameCount - startFrameNumber <= maxFrames && server.ConnectedClients.Count != clientCount)
{
var nextFrameNumber = Time.frameCount + 1;
yield return new WaitUntil(() => Time.frameCount >= nextFrameNumber);
}
var res = server.ConnectedClients.Count == clientCount;
if (result != null)
{
result.Result = res;
}
else
{
Assert.True(res, "A client never connected to server");
}
}
/// <summary>
/// Gets a NetworkObject instance as it's represented by a certain peer.
/// </summary>
/// <param name="networkObjectId">The networkObjectId to get</param>
/// <param name="representation">The representation to get the object from</param>
/// <param name="result">The result</param>
/// <param name="failIfNull">Whether or not to fail if no object is found and result is null</param>
/// <param name="maxFrames">The max frames to wait for</param>
public static IEnumerator GetNetworkObjectByRepresentation(ulong networkObjectId, NetworkManager representation, CoroutineResultWrapper<NetworkObject> result, bool failIfNull = true, int maxFrames = DefaultMaxFrames)
{
if (result == null)
{
throw new ArgumentNullException("Result cannot be null");
}
var startFrameNumber = Time.frameCount;
while (Time.frameCount - startFrameNumber <= maxFrames && representation.SpawnManager.SpawnedObjects.All(x => x.Value.NetworkObjectId != networkObjectId))
{
var nextFrameNumber = Time.frameCount + 1;
yield return new WaitUntil(() => Time.frameCount >= nextFrameNumber);
}
result.Result = representation.SpawnManager.SpawnedObjects.First(x => x.Value.NetworkObjectId == networkObjectId).Value;
if (failIfNull && result.Result == null)
{
Assert.Fail("NetworkObject could not be found");
}
}
/// <summary>
/// Gets a NetworkObject instance as it's represented by a certain peer.
/// </summary>
/// <param name="predicate">The predicate used to filter for your target NetworkObject</param>
/// <param name="representation">The representation to get the object from</param>
/// <param name="result">The result</param>
/// <param name="failIfNull">Whether or not to fail if no object is found and result is null</param>
/// <param name="maxFrames">The max frames to wait for</param>
public static IEnumerator GetNetworkObjectByRepresentation(Func<NetworkObject, bool> predicate, NetworkManager representation, CoroutineResultWrapper<NetworkObject> result, bool failIfNull = true, int maxFrames = DefaultMaxFrames)
{
if (result == null)
{
throw new ArgumentNullException("Result cannot be null");
}
if (predicate == null)
{
throw new ArgumentNullException("Predicate cannot be null");
}
var startFrame = Time.frameCount;
while (Time.frameCount - startFrame <= maxFrames && !representation.SpawnManager.SpawnedObjects.Any(x => predicate(x.Value)))
{
var nextFrameNumber = Time.frameCount + 1;
yield return new WaitUntil(() => Time.frameCount >= nextFrameNumber);
}
result.Result = representation.SpawnManager.SpawnedObjects.FirstOrDefault(x => predicate(x.Value)).Value;
if (failIfNull && result.Result == null)
{
Assert.Fail("NetworkObject could not be found");
}
}
/// <summary>
/// Runs some code, then verifies the condition (combines 'Run' and 'WaitForCondition')
/// </summary>
/// <param name="workload">Action / code to run</param>
/// <param name="predicate">The predicate to wait for</param>
/// <param name="maxFrames">The max frames to wait for</param>
public static IEnumerator RunAndWaitForCondition(Action workload, Func<bool> predicate, int maxFrames = DefaultMaxFrames, int minFrames = DefaultMinFrames)
{
var waitResult = new CoroutineResultWrapper<bool>();
workload();
yield return Run(WaitForCondition(
predicate,
waitResult,
maxFrames: maxFrames,
minFrames: minFrames));
if (!waitResult.Result)
{
throw new Exception();
}
}
/// <summary>
/// Waits for a predicate condition to be met
/// </summary>
/// <param name="predicate">The predicate to wait for</param>
/// <param name="result">The result. If null, it will fail if the predicate is not met</param>
/// <param name="minFrames">The min frames to wait for</param>
/// <param name="maxFrames">The max frames to wait for</param>
public static IEnumerator WaitForCondition(Func<bool> predicate, CoroutineResultWrapper<bool> result = null, int maxFrames = DefaultMaxFrames, int minFrames = DefaultMinFrames)
{
if (predicate == null)
{
throw new ArgumentNullException("Predicate cannot be null");
}
var startFrameNumber = Time.frameCount;
if (minFrames > 0)
{
yield return new WaitUntil(() =>
{
return Time.frameCount >= minFrames;
});
}
while (Time.frameCount - startFrameNumber <= maxFrames &&
!predicate())
{
// Changed to 2 frames to avoid the scenario where it would take 1+ frames to
// see a value change (i.e. discovered in the NetworkTransformTests)
var nextFrameNumber = Time.frameCount + 2;
yield return new WaitUntil(() =>
{
return Time.frameCount >= nextFrameNumber;
});
}
var res = predicate();
if (result != null)
{
result.Result = res;
}
else
{
Assert.True(res, "PREDICATE CONDITION");
}
}
}
}