com.unity.netcode.gameobjects@2.0.0-exp.2

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [2.0.0-exp.2] - 2024-04-02

### Added
- Added updates to all internal messages to account for a distributed authority network session connection.  (#2863)
- Added `NetworkRigidbodyBase` that provides users with a more customizable network rigidbody, handles both `Rigidbody` and `Rigidbody2D`, and provides an option to make `NetworkTransform` use the rigid body for motion.  (#2863)
  - For a customized `NetworkRigidbodyBase` class:
    - `NetworkRigidbodyBase.AutoUpdateKinematicState` provides control on whether the kinematic setting will be automatically set or not when ownership changes.
    - `NetworkRigidbodyBase.AutoSetKinematicOnDespawn` provides control on whether isKinematic will automatically be set to true when the associated `NetworkObject` is despawned.
    - `NetworkRigidbodyBase.Initialize` is a protected method that, when invoked, will initialize the instance. This includes options to:
      - Set whether using a `RigidbodyTypes.Rigidbody` or `RigidbodyTypes.Rigidbody2D`.
      - Includes additional optional parameters to set the `NetworkTransform`, `Rigidbody`, and `Rigidbody2d` to use.
  - Provides additional public methods:
    - `NetworkRigidbodyBase.GetPosition` to return the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.GetRotation` to return the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.MovePosition` to move to the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.MoveRotation` to move to the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.SetPosition` to set the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.SetRotation` to set the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.ApplyCurrentTransform` to set the position and rotation of the `Rigidbody` or `Rigidbody2d` based on the associated `GameObject` transform (depending upon its initialized setting).
    - `NetworkRigidbodyBase.WakeIfSleeping` to wake up the rigid body if sleeping.
    - `NetworkRigidbodyBase.SleepRigidbody` to put the rigid body to sleep.
    - `NetworkRigidbodyBase.IsKinematic` to determine if the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) is currently kinematic.
    - `NetworkRigidbodyBase.SetIsKinematic` to set the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) current kinematic state.
    - `NetworkRigidbodyBase.ResetInterpolation` to reset the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) back to its original interpolation value when initialized.
  - Now includes a `MonoBehaviour.FixedUpdate` implementation that will update the assigned `NetworkTransform` when `NetworkRigidbodyBase.UseRigidBodyForMotion` is true. (#2863)
- Added `RigidbodyContactEventManager` that provides a more optimized way to process collision enter and collision stay events as opposed to the `Monobehaviour` approach. (#2863)
  - Can be used in client-server and distributed authority modes, but is particularly useful in distributed authority.
- Added rigid body motion updates to `NetworkTransform` which allows users to set interolation on rigid bodies. (#2863)
  - Extrapolation is only allowed on authoritative instances, but custom class derived from `NetworkRigidbodyBase` or `NetworkRigidbody` or `NetworkRigidbody2D` automatically switches non-authoritative instances to interpolation if set to extrapolation.
- Added distributed authority mode support to `NetworkAnimator`. (#2863)
- Added session mode selection to `NetworkManager` inspector view. (#2863)
- Added distributed authority permissions feature. (#2863)
- Added distributed authority mode specific `NetworkObject` permissions flags (Distributable, Transferable, and RequestRequired). (#2863)
- Added distributed authority mode specific `NetworkObject.SetOwnershipStatus` method that applies one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863)
- Added distributed authority mode specific `NetworkObject.RemoveOwnershipStatus` method that removes one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863)
- Added distributed authority mode specific `NetworkObject.HasOwnershipStatus` method that will return (true or false) whether one or more ownership flags is set. (#2863)
- Added distributed authority mode specific `NetworkObject.SetOwnershipLock` method that locks ownership of a `NetworkObject` to prevent ownership from changing until the current owner releases the lock. (#2863)
- Added distributed authority mode specific `NetworkObject.RequestOwnership` method that sends an ownership request to the current owner of a spawned `NetworkObject` instance. (#2863)
- Added distributed authority mode specific `NetworkObject.OnOwnershipRequested` callback handler that is invoked on the owner/authoritative side when a non-owner requests ownership. Depending upon the boolean returned value depends upon whether the request is approved or denied. (#2863)
- Added distributed authority mode specific `NetworkObject.OnOwnershipRequestResponse` callback handler that is invoked when a non-owner's request has been processed. This callback includes a `NetworkObjet.OwnershipRequestResponseStatus` response parameter that describes whether the request was approved or the reason why it was not approved. (#2863)
- Added distributed authority mode specific `NetworkObject.DeferDespawn` method that defers the despawning of `NetworkObject` instances on non-authoritative clients based on the tick offset parameter. (#2863)
- Added distributed authority mode specific `NetworkObject.OnDeferredDespawnComplete` callback handler that can be used to further control when deferring the despawning of a `NetworkObject` on non-authoritative instances. (#2863)
- Added `NetworkClient.SessionModeType` as one way to determine the current session mode of the network session a client is connected to. (#2863)
- Added distributed authority mode specific `NetworkClient.IsSessionOwner` property to determine if the current local client is the current session owner of a distributed authority session. (#2863)
- Added distributed authority mode specific client side spawning capabilities. When running in distributed authority mode, clients can instantiate and spawn `NetworkObject` instances (the local client is authomatically the owner of the spawned object). (#2863)
  - This is useful to better visually synchronize owner authoritative motion models and newly spawned `NetworkObject` instances (i.e. projectiles for example).
- Added distributed authority mode specific client side player spawning capabilities. Clients will automatically spawn their associated player object locally. (#2863)
- Added distributed authority mode specific `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property (default is true) to provide control over the automatic spawning of player prefabs on the local client side. (#2863)
- Added distributed authority mode specific `NetworkManager.OnFetchLocalPlayerPrefabToSpawn` callback that, when assigned, will allow the local client to provide the player prefab to be spawned for the local client. (#2863)
  - This is only invoked if the `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property is set to true.
- Added distributed authority mode specific `NetworkBehaviour.HasAuthority` property that determines if the local client has authority over the associated `NetworkObject` instance (typical use case is within a `NetworkBehaviour` script much like that of `IsServer` or `IsClient`). (#2863)
- Added distributed authority mode specific `NetworkBehaviour.IsSessionOwner` property that determines if the local client is the session owner (typical use case would be to determine if the local client can has scene management authority within a `NetworkBehaviour` script). (#2863)
- Added support for distributed authority mode scene management where the currently assigned session owner can start scene events (i.e. scene loading and scene unloading). (#2863)

### Fixed

- Fixed issue where the host was not invoking `OnClientDisconnectCallback` for its own local client when internally shutting down. (#2822)
- Fixed issue where NetworkTransform could potentially attempt to "unregister" a named message prior to it being registered. (#2807)
- Fixed issue where in-scene placed `NetworkObject`s with complex nested children `NetworkObject`s (more than one child in depth) would not synchronize properly if WorldPositionStays was set to true. (#2796)

### Changed
- Changed client side awareness of other clients is now the same as a server or host. (#2863)
- Changed `NetworkManager.ConnectedClients` can now be accessed by both server and clients. (#2863)
- Changed `NetworkManager.ConnectedClientsList` can now be accessed by both server and clients. (#2863)
- Changed `NetworkTransform` defaults to owner authoritative when connected to a distributed authority session. (#2863)
- Changed `NetworkVariable` defaults to owner write and everyone read permissions when connected to a distributed authority session (even if declared with server read or write permissions).  (#2863)
- Changed `NetworkObject` no longer implements the `MonoBehaviour.Update` method in order to determine whether a `NetworkObject` instance has been migrated to a different scene. Instead, only `NetworkObjects` with the `SceneMigrationSynchronization` property set will be updated internally during the `NetworkUpdateStage.PostLateUpdate` by `NetworkManager`. (#2863)
- Changed `NetworkManager` inspector view layout where properties are now organized by category. (#2863)
- Changed `NetworkTransform` to now use `NetworkTransformMessage` as opposed to named messages for NetworkTransformState updates. (#2810)
- Changed `CustomMessageManager` so it no longer attempts to register or "unregister" a null or empty string and will log an error if this condition occurs. (#2807)
This commit is contained in:
Unity Technologies
2024-04-02 00:00:00 +00:00
parent f8ebf679ec
commit 143a6cbd34
140 changed files with 18009 additions and 2672 deletions

View File

@@ -0,0 +1,769 @@
using System;
using System.Collections.Generic;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Mathematics;
namespace Unity.Netcode
{
internal static class CollectionSerializationUtility
{
public static void WriteNativeArrayDelta<T>(FastBufferWriter writer, ref NativeArray<T> value, ref NativeArray<T> previousValue) where T : unmanaged
{
// This bit vector serializes the list of which fields have changed using 1 bit per field.
// This will always be 1 bit per field of the whole array (rounded up to the nearest 8 bits)
// even if there is only one change, so as compared to serializing the index with each item,
// this will use more bandwidth when the overall bandwidth usage is small and the array is large,
// but less when the overall bandwidth usage is large. So it optimizes for the worst case while accepting
// some reduction in efficiency in the best case.
using var changes = new ResizableBitVector(Allocator.Temp);
int minLength = math.min(value.Length, previousValue.Length);
var numChanges = 0;
// Iterate the array, checking which values have changed and marking that in the bit vector
for (var i = 0; i < minLength; ++i)
{
var val = value[i];
var prevVal = previousValue[i];
if (!NetworkVariableSerialization<T>.AreEqual(ref val, ref prevVal))
{
++numChanges;
changes.Set(i);
}
}
// Mark any newly added items as well
// We don't need to mark removed items because they are captured by serializing the length
for (var i = previousValue.Length; i < value.Length; ++i)
{
++numChanges;
changes.Set(i);
}
// If the size of serializing the dela is greater than the size of serializing the whole array (i.e.,
// because almost the entire array has changed and the overhead of the change set increases bandwidth),
// then we just do a normal full serialization instead of a delta.
if (changes.GetSerializedSize() + FastBufferWriter.GetWriteSize<T>() * numChanges > FastBufferWriter.GetWriteSize<T>() * value.Length)
{
// 1 = full serialization
writer.WriteByteSafe(1);
writer.WriteValueSafe(value);
return;
}
// 0 = delta serialization
writer.WriteByte(0);
// Write the length, which will be used on the read side to resize the array
BytePacker.WriteValuePacked(writer, value.Length);
writer.WriteValueSafe(changes);
unsafe
{
var ptr = (T*)value.GetUnsafePtr();
var prevPtr = (T*)previousValue.GetUnsafePtr();
for (int i = 0; i < value.Length; ++i)
{
if (changes.IsSet(i))
{
if (i < previousValue.Length)
{
// If we have an item in the previous array for this index, we can do nested deltas!
NetworkVariableSerialization<T>.WriteDelta(writer, ref ptr[i], ref prevPtr[i]);
}
else
{
// If not, just write it normally
NetworkVariableSerialization<T>.Write(writer, ref ptr[i]);
}
}
}
}
}
public static void ReadNativeArrayDelta<T>(FastBufferReader reader, ref NativeArray<T> value) where T : unmanaged
{
// 1 = full serialization, 0 = delta serialization
reader.ReadByteSafe(out byte full);
if (full == 1)
{
// If we're doing full serialization, we fall back on reading the whole array.
value.Dispose();
reader.ReadValueSafe(out value, Allocator.Persistent);
return;
}
// If not, first read the length and the change bits
ByteUnpacker.ReadValuePacked(reader, out int length);
var changes = new ResizableBitVector(Allocator.Temp);
using var toDispose = changes;
{
reader.ReadNetworkSerializableInPlace(ref changes);
// If the length has changed, we need to resize.
// NativeArray is not resizeable, so we have to dispose and allocate a new one.
var previousLength = value.Length;
if (length != value.Length)
{
var newArray = new NativeArray<T>(length, Allocator.Persistent);
unsafe
{
UnsafeUtility.MemCpy(newArray.GetUnsafePtr(), value.GetUnsafePtr(), math.min(newArray.Length * sizeof(T), value.Length * sizeof(T)));
}
value.Dispose();
value = newArray;
}
unsafe
{
var ptr = (T*)value.GetUnsafePtr();
for (var i = 0; i < value.Length; ++i)
{
if (changes.IsSet(i))
{
if (i < previousLength)
{
// If we have an item to read a delta into, read it as a delta
NetworkVariableSerialization<T>.ReadDelta(reader, ref ptr[i]);
}
else
{
// If not, read as a standard element
NetworkVariableSerialization<T>.Read(reader, ref ptr[i]);
}
}
}
}
}
}
public static void WriteListDelta<T>(FastBufferWriter writer, ref List<T> value, ref List<T> previousValue)
{
// Lists can be null, so we have to handle that case.
// We do that by marking this as a full serialization and using the existing null handling logic
// in NetworkVariableSerialization<List<T>>
if (value == null || previousValue == null)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<List<T>>.Write(writer, ref value);
return;
}
// This bit vector serializes the list of which fields have changed using 1 bit per field.
// This will always be 1 bit per field of the whole array (rounded up to the nearest 8 bits)
// even if there is only one change, so as compared to serializing the index with each item,
// this will use more bandwidth when the overall bandwidth usage is small and the array is large,
// but less when the overall bandwidth usage is large. So it optimizes for the worst case while accepting
// some reduction in efficiency in the best case.
using var changes = new ResizableBitVector(Allocator.Temp);
int minLength = math.min(value.Count, previousValue.Count);
var numChanges = 0;
// Iterate the list, checking which values have changed and marking that in the bit vector
for (var i = 0; i < minLength; ++i)
{
var val = value[i];
var prevVal = previousValue[i];
if (!NetworkVariableSerialization<T>.AreEqual(ref val, ref prevVal))
{
++numChanges;
changes.Set(i);
}
}
// Mark any newly added items as well
// We don't need to mark removed items because they are captured by serializing the length
for (var i = previousValue.Count; i < value.Count; ++i)
{
++numChanges;
changes.Set(i);
}
// If the size of serializing the dela is greater than the size of serializing the whole array (i.e.,
// because almost the entire array has changed and the overhead of the change set increases bandwidth),
// then we just do a normal full serialization instead of a delta.
// In the case of List<T>, it's difficult to know exactly what the serialized size is going to be before
// we serialize it, so we fudge it.
if (numChanges >= value.Count * 0.9)
{
// 1 = full serialization
writer.WriteByteSafe(1);
NetworkVariableSerialization<List<T>>.Write(writer, ref value);
return;
}
// 0 = delta serialization
writer.WriteByteSafe(0);
// Write the length, which will be used on the read side to resize the list
BytePacker.WriteValuePacked(writer, value.Count);
writer.WriteValueSafe(changes);
for (int i = 0; i < value.Count; ++i)
{
if (changes.IsSet(i))
{
var reffable = value[i];
if (i < previousValue.Count)
{
// If we have an item in the previous array for this index, we can do nested deltas!
var prevReffable = previousValue[i];
NetworkVariableSerialization<T>.WriteDelta(writer, ref reffable, ref prevReffable);
}
else
{
// If not, just write it normally.
NetworkVariableSerialization<T>.Write(writer, ref reffable);
}
}
}
}
public static void ReadListDelta<T>(FastBufferReader reader, ref List<T> value)
{
// 1 = full serialization, 0 = delta serialization
reader.ReadByteSafe(out byte full);
if (full == 1)
{
// If we're doing full serialization, we fall back on reading the whole list.
NetworkVariableSerialization<List<T>>.Read(reader, ref value);
return;
}
// If not, first read the length and the change bits
ByteUnpacker.ReadValuePacked(reader, out int length);
var changes = new ResizableBitVector(Allocator.Temp);
using var toDispose = changes;
{
reader.ReadNetworkSerializableInPlace(ref changes);
// If the list shrank, we need to resize it down.
// List<T> has no method to reserve space for future elements,
// so if we have to grow it, we just do that using Add() below.
if (length < value.Count)
{
value.RemoveRange(length, value.Count - length);
}
for (var i = 0; i < length; ++i)
{
if (changes.IsSet(i))
{
if (i < value.Count)
{
// If we have an item to read a delta into, read it as a delta
T item = value[i];
NetworkVariableSerialization<T>.ReadDelta(reader, ref item);
value[i] = item;
}
else
{
// If not, just read it as a standard item.
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Add(item);
}
}
}
}
}
// For HashSet and Dictionary, we need to have some local space to hold lists we need to serialize.
// We don't want to do allocations all the time and we know each one needs a maximum of three lists,
// so we're going to keep static lists that we can reuse in these methods.
private static class ListCache<T>
{
private static List<T> s_AddedList = new List<T>();
private static List<T> s_RemovedList = new List<T>();
private static List<T> s_ChangedList = new List<T>();
public static List<T> GetAddedList()
{
s_AddedList.Clear();
return s_AddedList;
}
public static List<T> GetRemovedList()
{
s_RemovedList.Clear();
return s_RemovedList;
}
public static List<T> GetChangedList()
{
s_ChangedList.Clear();
return s_ChangedList;
}
}
public static void WriteHashSetDelta<T>(FastBufferWriter writer, ref HashSet<T> value, ref HashSet<T> previousValue) where T : IEquatable<T>
{
// HashSets can be null, so we have to handle that case.
// We do that by marking this as a full serialization and using the existing null handling logic
// in NetworkVariableSerialization<HashSet<T>>
if (value == null || previousValue == null)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<HashSet<T>>.Write(writer, ref value);
return;
}
// No changed array because a set can't have a "changed" element, only added and removed.
var added = ListCache<T>.GetAddedList();
var removed = ListCache<T>.GetRemovedList();
// collect the new elements
foreach (var item in value)
{
if (!previousValue.Contains(item))
{
added.Add(item);
}
}
// collect the removed elements
foreach (var item in previousValue)
{
if (!value.Contains(item))
{
removed.Add(item);
}
}
// If we've got more changes than total items, we just do a full serialization
if (added.Count + removed.Count >= value.Count)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<HashSet<T>>.Write(writer, ref value);
return;
}
writer.WriteByteSafe(0);
// Write out the added and removed arrays.
writer.WriteValueSafe(added.Count);
for (var i = 0; i < added.Count; ++i)
{
var item = added[i];
NetworkVariableSerialization<T>.Write(writer, ref item);
}
writer.WriteValueSafe(removed.Count);
for (var i = 0; i < removed.Count; ++i)
{
var item = removed[i];
NetworkVariableSerialization<T>.Write(writer, ref item);
}
}
public static void ReadHashSetDelta<T>(FastBufferReader reader, ref HashSet<T> value) where T : IEquatable<T>
{
// 1 = full serialization, 0 = delta serialization
reader.ReadByteSafe(out byte full);
if (full != 0)
{
NetworkVariableSerialization<HashSet<T>>.Read(reader, ref value);
return;
}
// Read in the added and removed values
reader.ReadValueSafe(out int addedCount);
for (var i = 0; i < addedCount; ++i)
{
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Add(item);
}
reader.ReadValueSafe(out int removedCount);
for (var i = 0; i < removedCount; ++i)
{
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Remove(item);
}
}
public static void WriteDictionaryDelta<TKey, TVal>(FastBufferWriter writer, ref Dictionary<TKey, TVal> value, ref Dictionary<TKey, TVal> previousValue)
where TKey : IEquatable<TKey>
{
if (value == null || previousValue == null)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<Dictionary<TKey, TVal>>.Write(writer, ref value);
return;
}
var added = ListCache<KeyValuePair<TKey, TVal>>.GetAddedList();
var changed = ListCache<KeyValuePair<TKey, TVal>>.GetRemovedList();
var removed = ListCache<KeyValuePair<TKey, TVal>>.GetChangedList();
// Collect items that have been added or have changed
foreach (var item in value)
{
var val = item.Value;
var hasPrevVal = previousValue.TryGetValue(item.Key, out var prevVal);
if (!hasPrevVal)
{
added.Add(item);
}
else if (!NetworkVariableSerialization<TVal>.AreEqual(ref val, ref prevVal))
{
changed.Add(item);
}
}
// collect the items that have been removed
foreach (var item in previousValue)
{
if (!value.ContainsKey(item.Key))
{
removed.Add(item);
}
}
// If there are more changes than total values, just do a full serialization
if (added.Count + removed.Count + changed.Count >= value.Count)
{
writer.WriteByteSafe(1);
NetworkVariableSerialization<Dictionary<TKey, TVal>>.Write(writer, ref value);
return;
}
writer.WriteByteSafe(0);
// Else, write out the added, removed, and changed arrays
writer.WriteValueSafe(added.Count);
for (var i = 0; i < added.Count; ++i)
{
(var key, var val) = (added[i].Key, added[i].Value);
NetworkVariableSerialization<TKey>.Write(writer, ref key);
NetworkVariableSerialization<TVal>.Write(writer, ref val);
}
writer.WriteValueSafe(removed.Count);
for (var i = 0; i < removed.Count; ++i)
{
var key = removed[i].Key;
NetworkVariableSerialization<TKey>.Write(writer, ref key);
}
writer.WriteValueSafe(changed.Count);
for (var i = 0; i < changed.Count; ++i)
{
(var key, var val) = (changed[i].Key, changed[i].Value);
NetworkVariableSerialization<TKey>.Write(writer, ref key);
NetworkVariableSerialization<TVal>.Write(writer, ref val);
}
}
public static void ReadDictionaryDelta<TKey, TVal>(FastBufferReader reader, ref Dictionary<TKey, TVal> value)
where TKey : IEquatable<TKey>
{
// 1 = full serialization, 0 = delta serialization
reader.ReadByteSafe(out byte full);
if (full != 0)
{
NetworkVariableSerialization<Dictionary<TKey, TVal>>.Read(reader, ref value);
return;
}
// Added
reader.ReadValueSafe(out int length);
for (var i = 0; i < length; ++i)
{
(TKey key, TVal val) = (default, default);
NetworkVariableSerialization<TKey>.Read(reader, ref key);
NetworkVariableSerialization<TVal>.Read(reader, ref val);
value.Add(key, val);
}
// Removed
reader.ReadValueSafe(out length);
for (var i = 0; i < length; ++i)
{
TKey key = default;
NetworkVariableSerialization<TKey>.Read(reader, ref key);
value.Remove(key);
}
// Changed
reader.ReadValueSafe(out length);
for (var i = 0; i < length; ++i)
{
(TKey key, TVal val) = (default, default);
NetworkVariableSerialization<TKey>.Read(reader, ref key);
NetworkVariableSerialization<TVal>.Read(reader, ref val);
value[key] = val;
}
}
#if UNITY_NETCODE_NATIVE_COLLECTION_SUPPORT
public static void WriteNativeListDelta<T>(FastBufferWriter writer, ref NativeList<T> value, ref NativeList<T> previousValue) where T : unmanaged
{
// See WriteListDelta and WriteNativeArrayDelta to understand most of this. It's basically the same,
// just adjusted for the NativeList API
using var changes = new ResizableBitVector(Allocator.Temp);
int minLength = math.min(value.Length, previousValue.Length);
var numChanges = 0;
for (var i = 0; i < minLength; ++i)
{
var val = value[i];
var prevVal = previousValue[i];
if (!NetworkVariableSerialization<T>.AreEqual(ref val, ref prevVal))
{
++numChanges;
changes.Set(i);
}
}
for (var i = previousValue.Length; i < value.Length; ++i)
{
++numChanges;
changes.Set(i);
}
if (changes.GetSerializedSize() + FastBufferWriter.GetWriteSize<T>() * numChanges > FastBufferWriter.GetWriteSize<T>() * value.Length)
{
writer.WriteByteSafe(1);
writer.WriteValueSafe(value);
return;
}
writer.WriteByte(0);
BytePacker.WriteValuePacked(writer, value.Length);
writer.WriteValueSafe(changes);
unsafe
{
#if UTP_TRANSPORT_2_0_ABOVE
var ptr = value.GetUnsafePtr();
var prevPtr = previousValue.GetUnsafePtr();
#else
var ptr = (T*)value.GetUnsafePtr();
var prevPtr = (T*)previousValue.GetUnsafePtr();
#endif
for (int i = 0; i < value.Length; ++i)
{
if (changes.IsSet(i))
{
if (i < previousValue.Length)
{
NetworkVariableSerialization<T>.WriteDelta(writer, ref ptr[i], ref prevPtr[i]);
}
else
{
NetworkVariableSerialization<T>.Write(writer, ref ptr[i]);
}
}
}
}
}
public static void ReadNativeListDelta<T>(FastBufferReader reader, ref NativeList<T> value) where T : unmanaged
{
// See ReadListDelta and ReadNativeArrayDelta to understand most of this. It's basically the same,
// just adjusted for the NativeList API
reader.ReadByteSafe(out byte full);
if (full == 1)
{
reader.ReadValueSafeInPlace(ref value);
return;
}
ByteUnpacker.ReadValuePacked(reader, out int length);
var changes = new ResizableBitVector(Allocator.Temp);
using var toDispose = changes;
{
reader.ReadNetworkSerializableInPlace(ref changes);
var previousLength = value.Length;
// The one big difference between this and NativeArray/List is that NativeList supports
// easy and fast resizing and reserving space.
if (length != value.Length)
{
value.Resize(length, NativeArrayOptions.UninitializedMemory);
}
unsafe
{
#if UTP_TRANSPORT_2_0_ABOVE
var ptr = value.GetUnsafePtr();
#else
var ptr = (T*)value.GetUnsafePtr();
#endif
for (var i = 0; i < value.Length; ++i)
{
if (changes.IsSet(i))
{
if (i < previousLength)
{
NetworkVariableSerialization<T>.ReadDelta(reader, ref ptr[i]);
}
else
{
NetworkVariableSerialization<T>.Read(reader, ref ptr[i]);
}
}
}
}
}
}
public static unsafe void WriteNativeHashSetDelta<T>(FastBufferWriter writer, ref NativeHashSet<T> value, ref NativeHashSet<T> previousValue) where T : unmanaged, IEquatable<T>
{
// See WriteHashSet; this is the same algorithm, adjusted for the NativeHashSet API
var added = stackalloc T[value.Count];
var removed = stackalloc T[previousValue.Count];
var addedCount = 0;
var removedCount = 0;
foreach (var item in value)
{
if (!previousValue.Contains(item))
{
added[addedCount] = item;
++addedCount;
}
}
foreach (var item in previousValue)
{
if (!value.Contains(item))
{
removed[removedCount] = item;
++removedCount;
}
}
#if UTP_TRANSPORT_2_0_ABOVE
if (addedCount + removedCount >= value.Count)
#else
if (addedCount + removedCount >= value.Count())
#endif
{
writer.WriteByteSafe(1);
writer.WriteValueSafe(value);
return;
}
writer.WriteByteSafe(0);
writer.WriteValueSafe(addedCount);
for (var i = 0; i < addedCount; ++i)
{
NetworkVariableSerialization<T>.Write(writer, ref added[i]);
}
writer.WriteValueSafe(removedCount);
for (var i = 0; i < removedCount; ++i)
{
NetworkVariableSerialization<T>.Write(writer, ref removed[i]);
}
}
public static void ReadNativeHashSetDelta<T>(FastBufferReader reader, ref NativeHashSet<T> value) where T : unmanaged, IEquatable<T>
{
// See ReadHashSet; this is the same algorithm, adjusted for the NativeHashSet API
reader.ReadByteSafe(out byte full);
if (full != 0)
{
reader.ReadValueSafeInPlace(ref value);
return;
}
reader.ReadValueSafe(out int addedCount);
for (var i = 0; i < addedCount; ++i)
{
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Add(item);
}
reader.ReadValueSafe(out int removedCount);
for (var i = 0; i < removedCount; ++i)
{
T item = default;
NetworkVariableSerialization<T>.Read(reader, ref item);
value.Remove(item);
}
}
public static unsafe void WriteNativeHashMapDelta<TKey, TVal>(FastBufferWriter writer, ref NativeHashMap<TKey, TVal> value, ref NativeHashMap<TKey, TVal> previousValue)
where TKey : unmanaged, IEquatable<TKey>
where TVal : unmanaged
{
// See WriteDictionary; this is the same algorithm, adjusted for the NativeHashMap API
#if UTP_TRANSPORT_2_0_ABOVE
var added = stackalloc KVPair<TKey, TVal>[value.Count];
var changed = stackalloc KVPair<TKey, TVal>[value.Count];
var removed = stackalloc KVPair<TKey, TVal>[previousValue.Count];
#else
var added = stackalloc KeyValue<TKey, TVal>[value.Count()];
var changed = stackalloc KeyValue<TKey, TVal>[value.Count()];
var removed = stackalloc KeyValue<TKey, TVal>[previousValue.Count()];
#endif
var addedCount = 0;
var changedCount = 0;
var removedCount = 0;
foreach (var item in value)
{
var hasPrevVal = previousValue.TryGetValue(item.Key, out var prevVal);
if (!hasPrevVal)
{
added[addedCount] = item;
++addedCount;
}
else if (!NetworkVariableSerialization<TVal>.AreEqual(ref item.Value, ref prevVal))
{
changed[changedCount] = item;
++changedCount;
}
}
foreach (var item in previousValue)
{
if (!value.ContainsKey(item.Key))
{
removed[removedCount] = item;
++removedCount;
}
}
#if UTP_TRANSPORT_2_0_ABOVE
if (addedCount + removedCount + changedCount >= value.Count)
#else
if (addedCount + removedCount + changedCount >= value.Count())
#endif
{
writer.WriteByteSafe(1);
writer.WriteValueSafe(value);
return;
}
writer.WriteByteSafe(0);
writer.WriteValueSafe(addedCount);
for (var i = 0; i < addedCount; ++i)
{
(var key, var val) = (added[i].Key, added[i].Value);
NetworkVariableSerialization<TKey>.Write(writer, ref key);
NetworkVariableSerialization<TVal>.Write(writer, ref val);
}
writer.WriteValueSafe(removedCount);
for (var i = 0; i < removedCount; ++i)
{
var key = removed[i].Key;
NetworkVariableSerialization<TKey>.Write(writer, ref key);
}
writer.WriteValueSafe(changedCount);
for (var i = 0; i < changedCount; ++i)
{
(var key, var val) = (changed[i].Key, changed[i].Value);
NetworkVariableSerialization<TKey>.Write(writer, ref key);
NetworkVariableSerialization<TVal>.Write(writer, ref val);
}
}
public static void ReadNativeHashMapDelta<TKey, TVal>(FastBufferReader reader, ref NativeHashMap<TKey, TVal> value)
where TKey : unmanaged, IEquatable<TKey>
where TVal : unmanaged
{
// See ReadDictionary; this is the same algorithm, adjusted for the NativeHashMap API
reader.ReadByteSafe(out byte full);
if (full != 0)
{
reader.ReadValueSafeInPlace(ref value);
return;
}
// Added
reader.ReadValueSafe(out int length);
for (var i = 0; i < length; ++i)
{
(TKey key, TVal val) = (default, default);
NetworkVariableSerialization<TKey>.Read(reader, ref key);
NetworkVariableSerialization<TVal>.Read(reader, ref val);
value.Add(key, val);
}
// Removed
reader.ReadValueSafe(out length);
for (var i = 0; i < length; ++i)
{
TKey key = default;
NetworkVariableSerialization<TKey>.Read(reader, ref key);
value.Remove(key);
}
// Changed
reader.ReadValueSafe(out length);
for (var i = 0; i < length; ++i)
{
(TKey key, TVal val) = (default, default);
NetworkVariableSerialization<TKey>.Read(reader, ref key);
NetworkVariableSerialization<TVal>.Read(reader, ref val);
value[key] = val;
}
}
#endif
}
}

View File

@@ -0,0 +1,3 @@
fileFormatVersion: 2
guid: c822ece4e24f4676861e07288a7f8526
timeCreated: 1705437250

View File

@@ -24,6 +24,7 @@ namespace Unity.Netcode
/// The callback to be invoked when the list gets changed
/// </summary>
public event OnListChangedDelegate OnListChanged;
internal override NetworkVariableType Type => NetworkVariableType.NetworkList;
/// <summary>
/// Constructor method for <see cref="NetworkList"/>
@@ -98,7 +99,7 @@ namespace Unity.Netcode
break;
case NetworkListEvent<T>.EventType.Insert:
{
writer.WriteValueSafe(element.Index);
BytePacker.WriteValueBitPacked(writer, element.Index);
NetworkVariableSerialization<T>.Write(writer, ref element.Value);
}
break;
@@ -109,12 +110,12 @@ namespace Unity.Netcode
break;
case NetworkListEvent<T>.EventType.RemoveAt:
{
writer.WriteValueSafe(element.Index);
BytePacker.WriteValueBitPacked(writer, element.Index);
}
break;
case NetworkListEvent<T>.EventType.Value:
{
writer.WriteValueSafe(element.Index);
BytePacker.WriteValueBitPacked(writer, element.Index);
NetworkVariableSerialization<T>.Write(writer, ref element.Value);
}
break;
@@ -130,6 +131,20 @@ namespace Unity.Netcode
/// <inheritdoc />
public override void WriteField(FastBufferWriter writer)
{
if (m_NetworkManager.DistributedAuthorityMode)
{
writer.WriteValueSafe(NetworkVariableSerialization<T>.Type);
if (NetworkVariableSerialization<T>.Type == CollectionItemType.Unmanaged)
{
// Write the size of the unmanaged serialized type as it has a fixed size. This allows the CMB runtime to correctly read the unmanged type.
var placeholder = new T();
var startPos = writer.Position;
NetworkVariableSerialization<T>.Write(writer, ref placeholder);
var size = writer.Position - startPos;
writer.Seek(startPos);
BytePacker.WriteValueBitPacked(writer, size);
}
}
writer.WriteValueSafe((ushort)m_List.Length);
for (int i = 0; i < m_List.Length; i++)
{
@@ -141,6 +156,15 @@ namespace Unity.Netcode
public override void ReadField(FastBufferReader reader)
{
m_List.Clear();
if (m_NetworkManager.DistributedAuthorityMode)
{
// Collection item type is used by the CMB rust service, drop value here.
reader.ReadValueSafe(out CollectionItemType type);
if (type == CollectionItemType.Unmanaged)
{
ByteUnpacker.ReadValueBitPacked(reader, out int _);
}
}
reader.ReadValueSafe(out ushort count);
for (int i = 0; i < count; i++)
{
@@ -189,7 +213,7 @@ namespace Unity.Netcode
break;
case NetworkListEvent<T>.EventType.Insert:
{
reader.ReadValueSafe(out int index);
ByteUnpacker.ReadValueBitPacked(reader, out int index);
var value = new T();
NetworkVariableSerialization<T>.Read(reader, ref value);
@@ -261,7 +285,7 @@ namespace Unity.Netcode
break;
case NetworkListEvent<T>.EventType.RemoveAt:
{
reader.ReadValueSafe(out int index);
ByteUnpacker.ReadValueBitPacked(reader, out int index);
T value = m_List[index];
m_List.RemoveAt(index);
@@ -289,7 +313,7 @@ namespace Unity.Netcode
break;
case NetworkListEvent<T>.EventType.Value:
{
reader.ReadValueSafe(out int index);
ByteUnpacker.ReadValueBitPacked(reader, out int index);
var value = new T();
NetworkVariableSerialization<T>.Read(reader, ref value);
if (index >= m_List.Length)
@@ -367,7 +391,7 @@ namespace Unity.Netcode
public void Add(T item)
{
// check write permissions
if (!CanClientWrite(m_NetworkBehaviour.NetworkManager.LocalClientId))
if (!CanClientWrite(m_NetworkManager.LocalClientId))
{
throw new InvalidOperationException("Client is not allowed to write to this NetworkList");
}
@@ -388,7 +412,7 @@ namespace Unity.Netcode
public void Clear()
{
// check write permissions
if (!CanClientWrite(m_NetworkBehaviour.NetworkManager.LocalClientId))
if (!CanClientWrite(m_NetworkManager.LocalClientId))
{
throw new InvalidOperationException("Client is not allowed to write to this NetworkList");
}
@@ -414,7 +438,7 @@ namespace Unity.Netcode
public bool Remove(T item)
{
// check write permissions
if (!CanClientWrite(m_NetworkBehaviour.NetworkManager.LocalClientId))
if (!CanClientWrite(m_NetworkManager.LocalClientId))
{
throw new InvalidOperationException("Client is not allowed to write to this NetworkList");
}
@@ -449,7 +473,7 @@ namespace Unity.Netcode
public void Insert(int index, T item)
{
// check write permissions
if (!CanClientWrite(m_NetworkBehaviour.NetworkManager.LocalClientId))
if (!CanClientWrite(m_NetworkManager.LocalClientId))
{
throw new InvalidOperationException("Client is not allowed to write to this NetworkList");
}
@@ -478,7 +502,7 @@ namespace Unity.Netcode
public void RemoveAt(int index)
{
// check write permissions
if (!CanClientWrite(m_NetworkBehaviour.NetworkManager.LocalClientId))
if (!CanClientWrite(m_NetworkManager.LocalClientId))
{
throw new InvalidOperationException("Client is not allowed to write to this NetworkList");
}
@@ -503,7 +527,7 @@ namespace Unity.Netcode
set
{
// check write permissions
if (!CanClientWrite(m_NetworkBehaviour.NetworkManager.LocalClientId))
if (!CanClientWrite(m_NetworkManager.LocalClientId))
{
throw new InvalidOperationException("Client is not allowed to write to this NetworkList");
}
@@ -551,6 +575,7 @@ namespace Unity.Netcode
{
m_List.Dispose();
m_DirtyEvents.Dispose();
base.Dispose();
}
}

View File

@@ -21,6 +21,7 @@ namespace Unity.Netcode
/// The callback to be invoked when the value gets changed
/// </summary>
public OnValueChangedDelegate OnValueChanged;
internal override NetworkVariableType Type => NetworkVariableType.Value;
/// <summary>
/// Constructor for <see cref="NetworkVariable{T}"/>
@@ -43,6 +44,19 @@ namespace Unity.Netcode
m_PreviousValue = default;
}
/// <summary>
/// Resets the NetworkVariable when the associated NetworkObject is not spawned
/// </summary>
/// <param name="value">the value to reset the NetworkVariable to (if none specified it resets to the default)</param>
public void Reset(T value = default)
{
if (m_NetworkBehaviour == null || m_NetworkBehaviour != null && !m_NetworkBehaviour.NetworkObject.IsSpawned)
{
m_InternalValue = value;
m_PreviousValue = default;
}
}
/// <summary>
/// The internal value of the NetworkVariable
/// </summary>
@@ -68,9 +82,9 @@ namespace Unity.Netcode
return;
}
if (m_NetworkBehaviour && !CanClientWrite(m_NetworkBehaviour.NetworkManager.LocalClientId))
if (m_NetworkManager && !CanClientWrite(m_NetworkManager.LocalClientId))
{
throw new InvalidOperationException("Client is not allowed to write to this NetworkVariable");
throw new InvalidOperationException($"[Client-{m_NetworkManager.LocalClientId}][{m_NetworkBehaviour.name}][{Name}] Write permissions ({WritePerm}) for this client instance is not allowed!");
}
Set(value);
@@ -104,6 +118,8 @@ namespace Unity.Netcode
}
m_PreviousValue = default;
base.Dispose();
}
~NetworkVariable()
@@ -142,16 +158,16 @@ namespace Unity.Netcode
/// </summary>
public override void ResetDirty()
{
base.ResetDirty();
// Resetting the dirty value declares that the current value is not dirty
// Therefore, we set the m_PreviousValue field to a duplicate of the current
// field, so that our next dirty check is made against the current "not dirty"
// value.
if (!m_HasPreviousValue || !NetworkVariableSerialization<T>.AreEqual(ref m_InternalValue, ref m_PreviousValue))
if (IsDirty())
{
m_HasPreviousValue = true;
NetworkVariableSerialization<T>.Duplicate(m_InternalValue, ref m_PreviousValue);
}
base.ResetDirty();
}
/// <summary>
@@ -173,7 +189,7 @@ namespace Unity.Netcode
/// <param name="writer">The stream to write the value to</param>
public override void WriteDelta(FastBufferWriter writer)
{
WriteField(writer);
NetworkVariableSerialization<T>.WriteDelta(writer, ref m_InternalValue, ref m_PreviousValue);
}
/// <summary>
@@ -189,7 +205,7 @@ namespace Unity.Netcode
// would be stored in different fields
T previousValue = m_InternalValue;
NetworkVariableSerialization<T>.Read(reader, ref m_InternalValue);
NetworkVariableSerialization<T>.ReadDelta(reader, ref m_InternalValue);
if (keepDirtyDelta)
{

View File

@@ -18,6 +18,22 @@ namespace Unity.Netcode
/// </summary>
private protected NetworkBehaviour m_NetworkBehaviour;
private NetworkManager m_InternalNetworkManager;
internal virtual NetworkVariableType Type => NetworkVariableType.Custom;
private protected NetworkManager m_NetworkManager
{
get
{
if (m_InternalNetworkManager == null && m_NetworkBehaviour && m_NetworkBehaviour.NetworkObject?.NetworkManager)
{
m_InternalNetworkManager = m_NetworkBehaviour.NetworkObject?.NetworkManager;
}
return m_InternalNetworkManager;
}
}
public NetworkBehaviour GetBehaviour()
{
return m_NetworkBehaviour;
@@ -29,7 +45,14 @@ namespace Unity.Netcode
/// <param name="networkBehaviour">The NetworkBehaviour the NetworkVariable belongs to</param>
public void Initialize(NetworkBehaviour networkBehaviour)
{
m_InternalNetworkManager = null;
m_NetworkBehaviour = networkBehaviour;
if (m_NetworkBehaviour && m_NetworkBehaviour.NetworkObject?.NetworkManager)
{
m_InternalNetworkManager = m_NetworkBehaviour.NetworkObject?.NetworkManager;
// When in distributed authority mode, there is no such thing as server write permissions
InternalWritePerm = m_InternalNetworkManager.DistributedAuthorityMode ? NetworkVariableWritePermission.Owner : InternalWritePerm;
}
}
/// <summary>
@@ -53,7 +76,7 @@ namespace Unity.Netcode
NetworkVariableWritePermission writePerm = DefaultWritePerm)
{
ReadPerm = readPerm;
WritePerm = writePerm;
InternalWritePerm = writePerm;
}
/// <summary>
@@ -76,7 +99,17 @@ namespace Unity.Netcode
/// <summary>
/// The write permission for this var
/// </summary>
public readonly NetworkVariableWritePermission WritePerm;
public NetworkVariableWritePermission WritePerm
{
get
{
return InternalWritePerm;
}
}
// We had to change the Write Permission in distributed authority.
// (It is too bad we initially declared it as readonly)
internal NetworkVariableWritePermission InternalWritePerm;
/// <summary>
/// Sets whether or not the variable needs to be delta synced
@@ -92,12 +125,17 @@ namespace Unity.Netcode
}
}
internal static bool IgnoreInitializeWarning;
protected void MarkNetworkBehaviourDirty()
{
if (m_NetworkBehaviour == null)
{
Debug.LogWarning($"NetworkVariable is written to, but doesn't know its NetworkBehaviour yet. " +
"Are you modifying a NetworkVariable before the NetworkObject is spawned?");
if (!IgnoreInitializeWarning)
{
Debug.LogWarning($"NetworkVariable is written to, but doesn't know its NetworkBehaviour yet. " +
"Are you modifying a NetworkVariable before the NetworkObject is spawned?");
}
return;
}
if (m_NetworkBehaviour.NetworkManager.ShutdownInProgress)
@@ -109,7 +147,7 @@ namespace Unity.Netcode
}
return;
}
m_NetworkBehaviour.NetworkManager.BehaviourUpdater.AddForUpdate(m_NetworkBehaviour.NetworkObject);
m_NetworkBehaviour.NetworkManager.BehaviourUpdater?.AddForUpdate(m_NetworkBehaviour.NetworkObject);
}
/// <summary>
@@ -136,6 +174,11 @@ namespace Unity.Netcode
/// <returns>Whether or not the client has permission to read</returns>
public bool CanClientRead(ulong clientId)
{
// When in distributed authority mode, everyone can read (but only the owner can write)
if (m_NetworkManager != null && m_NetworkManager.DistributedAuthorityMode)
{
return true;
}
switch (ReadPerm)
{
default:
@@ -201,6 +244,50 @@ namespace Unity.Netcode
/// </summary>
public virtual void Dispose()
{
m_InternalNetworkManager = null;
}
}
/// <summary>
/// Enum representing the different types of Network Variables.
/// </summary>
public enum NetworkVariableType : byte
{
/// <summary>
/// Value
/// Used for all of the basic NetworkVariables that contain a single value
/// </summary>
Value = 0,
/// <summary>
/// Custom
/// For any custom implemented extension of the NetworkVariableBase
/// </summary>
Custom = 1,
/// <summary>
/// NetworkList
/// </summary>
NetworkList = 2
}
public enum CollectionItemType : byte
{
/// <summary>
/// For any type that is not valid inside a NetworkVariable collection
/// </summary>
Unknown = 0,
/// <summary>
/// The following types are valid types inside of NetworkVariable collections
/// </summary>
Short = 1,
UShort = 2,
Int = 3,
UInt = 4,
Long = 5,
ULong = 6,
Unmanaged = 7,
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,115 @@
using System;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
namespace Unity.Netcode
{
/// <summary>
/// This is a simple resizable bit vector - i.e., a list of flags that use 1 bit each and can
/// grow to an indefinite size. This is backed by a NativeList&lt;byte&gt; instead of a single
/// integer value, allowing it to contain any size of memory. Contains built-in serialization support.
/// </summary>
internal struct ResizableBitVector : INetworkSerializable, IDisposable
{
private NativeList<byte> m_Bits;
private const int k_Divisor = sizeof(byte) * 8;
public ResizableBitVector(Allocator allocator)
{
m_Bits = new NativeList<byte>(allocator);
}
public void Dispose()
{
m_Bits.Dispose();
}
public int GetSerializedSize()
{
return sizeof(int) + m_Bits.Length;
}
private (int, int) GetBitData(int i)
{
var index = i / k_Divisor;
var bitWithinIndex = i % k_Divisor;
return (index, bitWithinIndex);
}
/// <summary>
/// Set bit 'i' - i.e., bit 0 is 00000001, bit 1 is 00000010, and so on.
/// There is no upper bound on i except for the memory available in the system.
/// </summary>
/// <param name="i"></param>
public void Set(int i)
{
var (index, bitWithinIndex) = GetBitData(i);
if (index >= m_Bits.Length)
{
m_Bits.Resize(index + 1, NativeArrayOptions.ClearMemory);
}
m_Bits[index] |= (byte)(1 << bitWithinIndex);
}
/// <summary>
/// Unset bit 'i' - i.e., bit 0 is 00000001, bit 1 is 00000010, and so on.
/// There is no upper bound on i except for the memory available in the system.
/// Note that once a BitVector has grown to a certain size, it will not shrink back down,
/// so if you set and unset every bit, it will still serialize at its high watermark size.
/// </summary>
/// <param name="i"></param>
public void Unset(int i)
{
var (index, bitWithinIndex) = GetBitData(i);
if (index >= m_Bits.Length)
{
return;
}
m_Bits[index] &= (byte)~(1 << bitWithinIndex);
}
/// <summary>
/// Check if bit 'i' is set - i.e., bit 0 is 00000001, bit 1 is 00000010, and so on.
/// There is no upper bound on i except for the memory available in the system.
/// </summary>
/// <param name="i"></param>
public bool IsSet(int i)
{
var (index, bitWithinIndex) = GetBitData(i);
if (index >= m_Bits.Length)
{
return false;
}
return (m_Bits[index] & (byte)(1 << bitWithinIndex)) != 0;
}
public unsafe void NetworkSerialize<T>(BufferSerializer<T> serializer) where T : IReaderWriter
{
var length = m_Bits.Length;
serializer.SerializeValue(ref length);
m_Bits.ResizeUninitialized(length);
var ptr = m_Bits.GetUnsafePtr();
{
if (serializer.IsReader)
{
#if UTP_TRANSPORT_2_0_ABOVE
serializer.GetFastBufferReader().ReadBytesSafe(ptr, length);
#else
serializer.GetFastBufferReader().ReadBytesSafe((byte*)ptr, length);
#endif
}
else
{
#if UTP_TRANSPORT_2_0_ABOVE
serializer.GetFastBufferWriter().WriteBytesSafe(ptr, length);
#else
serializer.GetFastBufferWriter().WriteBytesSafe((byte*)ptr, length);
#endif
}
}
}
}
}

View File

@@ -0,0 +1,3 @@
fileFormatVersion: 2
guid: 664696a622e244dfa43b26628c05e4a6
timeCreated: 1705437231