com.unity.netcode.gameobjects@2.0.0-exp.2

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Additional documentation and release notes are available at [Multiplayer Documentation](https://docs-multiplayer.unity3d.com).

## [2.0.0-exp.2] - 2024-04-02

### Added
- Added updates to all internal messages to account for a distributed authority network session connection.  (#2863)
- Added `NetworkRigidbodyBase` that provides users with a more customizable network rigidbody, handles both `Rigidbody` and `Rigidbody2D`, and provides an option to make `NetworkTransform` use the rigid body for motion.  (#2863)
  - For a customized `NetworkRigidbodyBase` class:
    - `NetworkRigidbodyBase.AutoUpdateKinematicState` provides control on whether the kinematic setting will be automatically set or not when ownership changes.
    - `NetworkRigidbodyBase.AutoSetKinematicOnDespawn` provides control on whether isKinematic will automatically be set to true when the associated `NetworkObject` is despawned.
    - `NetworkRigidbodyBase.Initialize` is a protected method that, when invoked, will initialize the instance. This includes options to:
      - Set whether using a `RigidbodyTypes.Rigidbody` or `RigidbodyTypes.Rigidbody2D`.
      - Includes additional optional parameters to set the `NetworkTransform`, `Rigidbody`, and `Rigidbody2d` to use.
  - Provides additional public methods:
    - `NetworkRigidbodyBase.GetPosition` to return the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.GetRotation` to return the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.MovePosition` to move to the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.MoveRotation` to move to the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.Move` to move to the position and rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.SetPosition` to set the position of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.SetRotation` to set the rotation of the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting).
    - `NetworkRigidbodyBase.ApplyCurrentTransform` to set the position and rotation of the `Rigidbody` or `Rigidbody2d` based on the associated `GameObject` transform (depending upon its initialized setting).
    - `NetworkRigidbodyBase.WakeIfSleeping` to wake up the rigid body if sleeping.
    - `NetworkRigidbodyBase.SleepRigidbody` to put the rigid body to sleep.
    - `NetworkRigidbodyBase.IsKinematic` to determine if the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) is currently kinematic.
    - `NetworkRigidbodyBase.SetIsKinematic` to set the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) current kinematic state.
    - `NetworkRigidbodyBase.ResetInterpolation` to reset the `Rigidbody` or `Rigidbody2d` (depending upon its initialized setting) back to its original interpolation value when initialized.
  - Now includes a `MonoBehaviour.FixedUpdate` implementation that will update the assigned `NetworkTransform` when `NetworkRigidbodyBase.UseRigidBodyForMotion` is true. (#2863)
- Added `RigidbodyContactEventManager` that provides a more optimized way to process collision enter and collision stay events as opposed to the `Monobehaviour` approach. (#2863)
  - Can be used in client-server and distributed authority modes, but is particularly useful in distributed authority.
- Added rigid body motion updates to `NetworkTransform` which allows users to set interolation on rigid bodies. (#2863)
  - Extrapolation is only allowed on authoritative instances, but custom class derived from `NetworkRigidbodyBase` or `NetworkRigidbody` or `NetworkRigidbody2D` automatically switches non-authoritative instances to interpolation if set to extrapolation.
- Added distributed authority mode support to `NetworkAnimator`. (#2863)
- Added session mode selection to `NetworkManager` inspector view. (#2863)
- Added distributed authority permissions feature. (#2863)
- Added distributed authority mode specific `NetworkObject` permissions flags (Distributable, Transferable, and RequestRequired). (#2863)
- Added distributed authority mode specific `NetworkObject.SetOwnershipStatus` method that applies one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863)
- Added distributed authority mode specific `NetworkObject.RemoveOwnershipStatus` method that removes one or more `NetworkObject` instance's ownership flags. If updated when spawned, the ownership permission changes are synchronized with the other connected clients. (#2863)
- Added distributed authority mode specific `NetworkObject.HasOwnershipStatus` method that will return (true or false) whether one or more ownership flags is set. (#2863)
- Added distributed authority mode specific `NetworkObject.SetOwnershipLock` method that locks ownership of a `NetworkObject` to prevent ownership from changing until the current owner releases the lock. (#2863)
- Added distributed authority mode specific `NetworkObject.RequestOwnership` method that sends an ownership request to the current owner of a spawned `NetworkObject` instance. (#2863)
- Added distributed authority mode specific `NetworkObject.OnOwnershipRequested` callback handler that is invoked on the owner/authoritative side when a non-owner requests ownership. Depending upon the boolean returned value depends upon whether the request is approved or denied. (#2863)
- Added distributed authority mode specific `NetworkObject.OnOwnershipRequestResponse` callback handler that is invoked when a non-owner's request has been processed. This callback includes a `NetworkObjet.OwnershipRequestResponseStatus` response parameter that describes whether the request was approved or the reason why it was not approved. (#2863)
- Added distributed authority mode specific `NetworkObject.DeferDespawn` method that defers the despawning of `NetworkObject` instances on non-authoritative clients based on the tick offset parameter. (#2863)
- Added distributed authority mode specific `NetworkObject.OnDeferredDespawnComplete` callback handler that can be used to further control when deferring the despawning of a `NetworkObject` on non-authoritative instances. (#2863)
- Added `NetworkClient.SessionModeType` as one way to determine the current session mode of the network session a client is connected to. (#2863)
- Added distributed authority mode specific `NetworkClient.IsSessionOwner` property to determine if the current local client is the current session owner of a distributed authority session. (#2863)
- Added distributed authority mode specific client side spawning capabilities. When running in distributed authority mode, clients can instantiate and spawn `NetworkObject` instances (the local client is authomatically the owner of the spawned object). (#2863)
  - This is useful to better visually synchronize owner authoritative motion models and newly spawned `NetworkObject` instances (i.e. projectiles for example).
- Added distributed authority mode specific client side player spawning capabilities. Clients will automatically spawn their associated player object locally. (#2863)
- Added distributed authority mode specific `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property (default is true) to provide control over the automatic spawning of player prefabs on the local client side. (#2863)
- Added distributed authority mode specific `NetworkManager.OnFetchLocalPlayerPrefabToSpawn` callback that, when assigned, will allow the local client to provide the player prefab to be spawned for the local client. (#2863)
  - This is only invoked if the `NetworkConfig.AutoSpawnPlayerPrefabClientSide` property is set to true.
- Added distributed authority mode specific `NetworkBehaviour.HasAuthority` property that determines if the local client has authority over the associated `NetworkObject` instance (typical use case is within a `NetworkBehaviour` script much like that of `IsServer` or `IsClient`). (#2863)
- Added distributed authority mode specific `NetworkBehaviour.IsSessionOwner` property that determines if the local client is the session owner (typical use case would be to determine if the local client can has scene management authority within a `NetworkBehaviour` script). (#2863)
- Added support for distributed authority mode scene management where the currently assigned session owner can start scene events (i.e. scene loading and scene unloading). (#2863)

### Fixed

- Fixed issue where the host was not invoking `OnClientDisconnectCallback` for its own local client when internally shutting down. (#2822)
- Fixed issue where NetworkTransform could potentially attempt to "unregister" a named message prior to it being registered. (#2807)
- Fixed issue where in-scene placed `NetworkObject`s with complex nested children `NetworkObject`s (more than one child in depth) would not synchronize properly if WorldPositionStays was set to true. (#2796)

### Changed
- Changed client side awareness of other clients is now the same as a server or host. (#2863)
- Changed `NetworkManager.ConnectedClients` can now be accessed by both server and clients. (#2863)
- Changed `NetworkManager.ConnectedClientsList` can now be accessed by both server and clients. (#2863)
- Changed `NetworkTransform` defaults to owner authoritative when connected to a distributed authority session. (#2863)
- Changed `NetworkVariable` defaults to owner write and everyone read permissions when connected to a distributed authority session (even if declared with server read or write permissions).  (#2863)
- Changed `NetworkObject` no longer implements the `MonoBehaviour.Update` method in order to determine whether a `NetworkObject` instance has been migrated to a different scene. Instead, only `NetworkObjects` with the `SceneMigrationSynchronization` property set will be updated internally during the `NetworkUpdateStage.PostLateUpdate` by `NetworkManager`. (#2863)
- Changed `NetworkManager` inspector view layout where properties are now organized by category. (#2863)
- Changed `NetworkTransform` to now use `NetworkTransformMessage` as opposed to named messages for NetworkTransformState updates. (#2810)
- Changed `CustomMessageManager` so it no longer attempts to register or "unregister" a null or empty string and will log an error if this condition occurs. (#2807)
This commit is contained in:
Unity Technologies
2024-04-02 00:00:00 +00:00
parent f8ebf679ec
commit 143a6cbd34
140 changed files with 18009 additions and 2672 deletions

View File

@@ -0,0 +1,230 @@
#if COM_UNITY_MODULES_PHYSICS
using System.Collections.Generic;
using Unity.Collections;
using Unity.Jobs;
using UnityEngine;
namespace Unity.Netcode.Components
{
public interface IContactEventHandler
{
Rigidbody GetRigidbody();
void ContactEvent(ulong eventId, Vector3 averagedCollisionNormal, Rigidbody collidingBody, Vector3 contactPoint, bool hasCollisionStay = false, Vector3 averagedCollisionStayNormal = default);
}
[AddComponentMenu("Netcode/Rigidbody Contact Event Manager")]
public class RigidbodyContactEventManager : MonoBehaviour
{
public static RigidbodyContactEventManager Instance { get; private set; }
private struct JobResultStruct
{
public bool HasCollisionStay;
public int ThisInstanceID;
public int OtherInstanceID;
public Vector3 AverageNormal;
public Vector3 AverageCollisionStayNormal;
public Vector3 ContactPoint;
}
private NativeArray<JobResultStruct> m_ResultsArray;
private int m_Count = 0;
private JobHandle m_JobHandle;
private readonly Dictionary<int, Rigidbody> m_RigidbodyMapping = new Dictionary<int, Rigidbody>();
private readonly Dictionary<int, IContactEventHandler> m_HandlerMapping = new Dictionary<int, IContactEventHandler>();
private void OnEnable()
{
m_ResultsArray = new NativeArray<JobResultStruct>(16, Allocator.Persistent);
Physics.ContactEvent += Physics_ContactEvent;
if (Instance != null)
{
NetworkLog.LogError($"[Invalid][Multiple Instances] Found more than one instance of {nameof(RigidbodyContactEventManager)}: {name} and {Instance.name}");
NetworkLog.LogError($"[Disable][Additional Instance] Disabling {name} instance!");
gameObject.SetActive(false);
return;
}
Instance = this;
}
public void RegisterHandler(IContactEventHandler contactEventHandler, bool register = true)
{
var rigidbody = contactEventHandler.GetRigidbody();
var instanceId = rigidbody.GetInstanceID();
if (register)
{
if (!m_RigidbodyMapping.ContainsKey(instanceId))
{
m_RigidbodyMapping.Add(instanceId, rigidbody);
}
if (!m_HandlerMapping.ContainsKey(instanceId))
{
m_HandlerMapping.Add(instanceId, contactEventHandler);
}
}
else
{
m_RigidbodyMapping.Remove(instanceId);
m_HandlerMapping.Remove(instanceId);
}
}
private void OnDisable()
{
m_JobHandle.Complete();
m_ResultsArray.Dispose();
Physics.ContactEvent -= Physics_ContactEvent;
m_RigidbodyMapping.Clear();
Instance = null;
}
private bool m_HasCollisions;
private int m_CurrentCount = 0;
private void ProcessCollisions()
{
// Process all collisions
for (int i = 0; i < m_Count; i++)
{
var thisInstanceID = m_ResultsArray[i].ThisInstanceID;
var otherInstanceID = m_ResultsArray[i].OtherInstanceID;
var rb0Valid = thisInstanceID != 0 && m_RigidbodyMapping.ContainsKey(thisInstanceID);
var rb1Valid = otherInstanceID != 0 && m_RigidbodyMapping.ContainsKey(otherInstanceID);
// Only notify registered rigid bodies.
if (!rb0Valid || !rb1Valid || !m_HandlerMapping.ContainsKey(thisInstanceID))
{
continue;
}
if (m_ResultsArray[i].HasCollisionStay)
{
m_HandlerMapping[thisInstanceID].ContactEvent(m_EventId, m_ResultsArray[i].AverageNormal, m_RigidbodyMapping[otherInstanceID], m_ResultsArray[i].ContactPoint, m_ResultsArray[i].HasCollisionStay, m_ResultsArray[i].AverageCollisionStayNormal);
}
else
{
m_HandlerMapping[thisInstanceID].ContactEvent(m_EventId, m_ResultsArray[i].AverageNormal, m_RigidbodyMapping[otherInstanceID], m_ResultsArray[i].ContactPoint);
}
}
}
private void FixedUpdate()
{
// Only process new collisions
if (!m_HasCollisions && m_CurrentCount == 0)
{
return;
}
// This assures we won't process the same collision
// set after it has been processed.
if (m_HasCollisions)
{
m_CurrentCount = m_Count;
m_HasCollisions = false;
m_JobHandle.Complete();
}
ProcessCollisions();
}
private void LateUpdate()
{
m_CurrentCount = 0;
}
private ulong m_EventId;
private void Physics_ContactEvent(PhysicsScene scene, NativeArray<ContactPairHeader>.ReadOnly pairHeaders)
{
m_EventId++;
m_HasCollisions = true;
int n = pairHeaders.Length;
if (m_ResultsArray.Length < n)
{
m_ResultsArray.Dispose();
m_ResultsArray = new NativeArray<JobResultStruct>(Mathf.NextPowerOfTwo(n), Allocator.Persistent);
}
m_Count = n;
var job = new GetCollisionsJob()
{
PairedHeaders = pairHeaders,
ResultsArray = m_ResultsArray
};
m_JobHandle = job.Schedule(n, 256);
}
private struct GetCollisionsJob : IJobParallelFor
{
[ReadOnly]
public NativeArray<ContactPairHeader>.ReadOnly PairedHeaders;
public NativeArray<JobResultStruct> ResultsArray;
public void Execute(int index)
{
Vector3 averageNormal = Vector3.zero;
Vector3 averagePoint = Vector3.zero;
Vector3 averageCollisionStay = Vector3.zero;
int count = 0;
int collisionStaycount = 0;
int positionCount = 0;
for (int j = 0; j < PairedHeaders[index].pairCount; j++)
{
ref readonly var pair = ref PairedHeaders[index].GetContactPair(j);
if (pair.isCollisionExit)
{
continue;
}
for (int k = 0; k < pair.contactCount; k++)
{
ref readonly var contact = ref pair.GetContactPoint(k);
averagePoint += contact.position;
positionCount++;
if (!pair.isCollisionStay)
{
averageNormal += contact.normal;
count++;
}
else
{
averageCollisionStay += contact.normal;
collisionStaycount++;
}
}
}
if (count != 0)
{
averageNormal /= count;
}
if (collisionStaycount != 0)
{
averageCollisionStay /= collisionStaycount;
}
if (positionCount != 0)
{
averagePoint /= positionCount;
}
var result = new JobResultStruct()
{
ThisInstanceID = PairedHeaders[index].bodyInstanceID,
OtherInstanceID = PairedHeaders[index].otherBodyInstanceID,
AverageNormal = averageNormal,
HasCollisionStay = collisionStaycount != 0,
AverageCollisionStayNormal = averageCollisionStay,
ContactPoint = averagePoint
};
ResultsArray[index] = result;
}
}
}
}
#endif